Eigenvalue algorithms: Rayleigh iteration

MATH 6610 Lecture 19

October 21, 2020

Trefethen \& Bau: Lecture 27

Eigenvalues: power iteration

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian with eigenpairs $\left(\lambda_{j}, v_{j}\right)_{j=1}^{n}$ that are simple and ordered such that $\left|\lambda_{j}\right|>\left|\lambda_{j+1}\right|$.

Power iteration performs the following basic steps:
Initialize with a vector v (e.g., randomly):

1. $v \leftarrow \frac{A v}{\|A v\|_{2}}$
2. $\lambda \leftarrow R_{A}(v)$
3. Return to step 1

For a large number of iterations, then (λ, v) converges to $\left(\lambda_{1}, v_{1}\right)$.
To make this practically useful, need to supplement with termination criterion, deflation.

Power iteration's drawback

One major drawback of power iteration is that the ratio

$$
\begin{array}{r}
r=\left|\frac{\lambda_{j+1}}{\lambda_{j}}\right|, \quad \text { Recall convergence } \\
O\left(r^{k}\right) \text { (a) iteration } k .
\end{array}
$$

dictates the rate of convergence for computing eigenpair j.
This implies, in particular, that the effectiveness of this algorithm depends heavily on A.

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Power iteration's drawback

One major drawback of power iteration is that the ratio

$$
\left|\frac{\lambda_{j+1}}{\lambda_{j}}\right|,
$$

dictates the rate of convergence for computing eigenpair j.
This implies, in particular, that the effectiveness of this algorithm depends heavily on A.

But power iteration is simple and the idea is attractive. Is there a way to accelerate power iteration?

Inverse iteration
Inverse iteration "modifies" the spectrum of A so that power iteration will be "more successful."
spectrum has "larger" spacing.

Inverse iteration

Inverse iteration "modifies" the spectrum of A so that power iteration will be more successful.

First we note that, given some $\mu \in \mathbb{C}$, the eigenvalues of $(A-\mu I)^{-1}$ are $1 /\left(\lambda_{j}-\mu\right)$.

Inverse iteration

Inverse iteration "modifies" the spectrum of A so that power iteration will be more successful.

First we note that, given some $\mu \in \mathbb{C}$, the eigenvalues of $(A-\mu I)^{-1}$ are $1 /\left(\lambda_{j}-\mu\right)$.

The essential realization is that, if $\mu \approx \lambda_{j}$, then

$$
\frac{1}{\left|\mu-\lambda_{j}\right|} \gg \frac{1}{\left|\mu-\lambda_{k}\right|}, \quad \quad k \neq j
$$

I.e., if we can somehow get a "reasonable" guess μ, then power iteration on $(A-\mu I)^{-1}$ will be very efficient.

Rayleigh iteration

The idea of Rayleigh iteration is to combine

- inverse iteration, which accelerates identification of eigenvectors, with
- Rayleigh quotient evaluations, which accelerate identification of eigenvalues.

The idea of Rayleigh iteration is to combine

- inverse iteration, which accelerates identification of eigenvectors, with
- Rayleigh quotient evaluations, which accelerate identification of eigenvalues.
Initialize with a vector v and scalar μ (e.g., randomly):

1. $v \leftarrow(A-\mu I)^{-1} v \quad$ (inverse iteration)
2. $v \leftarrow v /\|v\|_{2}$
μ
3. $\mathrm{X} \leftarrow R_{A}(v)$
(Rayleigh quotient)
4. Return to step 1

In principle this is more expensive than power iteration: we must solve $(A-\mu I) x=v$ at every step.

Rayleigh iteration, II

The rather surprising fact: this is an extremely efficient algorithm.
Let $\lambda^{(k)}, v^{(k)}$ be the Rayleigh iteration eigenpair approximation at iteration k. Let $\lambda^{(k+1)}, v^{(k+1)}$ be the Rayleigh iteration eigenpair approximation at iteration $k+1$.

The rather surprising fact: this is an extremely efficient algorithm.
Let $\lambda^{(k)}, v^{(k)}$ be the Rayleigh iteration eigenpair approximation at iteration k. Let $\lambda^{(k+1)}, v^{(k+1)}$ be the Rayleigh iteration eigenpair approximation at iteration $k+1$.

Theorem
For almost every initialization of Rayleigh iteration, there is some eigenpair $\left(\lambda_{j}, v_{j}\right)$ of A such that

$$
\left|\lambda_{j}-\lambda^{(k+1)}\right| \leqslant\left|\lambda_{j}-\lambda^{(k)}\right|^{3}, \quad \quad\left\|v_{j}-v^{(k+1)}\right\| \leqslant\left\|v_{j}-v^{(k)}\right\|^{3}
$$

Convergence is cubic!
Proof $(-i s h): 1$ exponent of convergence from power iteration
2 exponents from Rayleigh quotient.

Rayleigh Iteration: choose initial vector U.

$$
\begin{aligned}
& v^{(0)}=v \\
& \lambda^{(0)}=R_{A}(v)
\end{aligned}
$$

for $k=1 ; 2 \ldots$

$$
w=\left(A-\lambda^{(k-1)} I\right)^{-1} v^{(k-1)}
$$

$$
v^{(k)}=w /\|w\|
$$

$$
\lambda^{(k)}=R_{A}\left(v^{(k)}\right)
$$

before was μ
For HF: need termination + deflation

Rayleigh iteration is really efficient.
Erg. $A \in \mathbb{C}^{n \times n}, n=100$.
Power iteration: performs some iterations, periodically T deflate.
Same idea
for Rayleigh iteration
Let's count \# of iterations per deflation.

there \#'s ore 2..7 7

Hotelling deflation (A Hermition)

$$
A=\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j} * \text { (} E-v \text { decompostion of } A \text {) }
$$

Suppose find eigenpar $(\mu, w) \cdot\left[=\left(\lambda_{k}, v_{k}\right)\right.$ for some k]

$$
A-\mu w w^{*}=\sum_{\substack{j=1 \\ j \neq k}}^{n} \lambda_{j} v_{j} v_{j} \ll \text { rank-(n-1) }
$$

