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L18-S00

Eigenvalue algorithms: Power iteration

MATH 6610 Lecture 18

October 19, 2020

Trefethen & Bau: Lectures 12, 25
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Eigenvalues L18-501

We've seen that eigenvalues, i.e., numbers A such that
Av=Xv, (v #0)

play fundamental roles in linear algebra. How are eigenvalues computed?
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Eigenvalues L18-501

We've seen that eigenvalues, i.e., numbers A such that
Av =X v, (v#0)
play fundamental roles in linear algebra. How are eigenvalues computed?

Perhaps the conceptually easiest strategy is to compute roots of a polynomial:

Av=X v <  pa(A)=det(A—\)=0.

/! |
Ctracteic ?g%MMM\
Margenstic

MATH 6610-001 — U. Utah Eigenvalue algorithms



Eigenvalues L18-501

We've seen that eigenvalues, i.e., numbers A such that
Av =Xv, (v#0)
play fundamental roles in linear algebra. How are eigenvalues computed?
Perhaps the conceptually easiest strategy is to compute roots of a polynomial:
Av=2Xxv <= pa(A) =det(A—-A)=0.

While conceptually easy, this turns out to be very difficult practically.
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Polynomial roots L18-502

We are trying to compute A satisfying

pa(A) =
n1
§-o J
/
coetbiatnts
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Polynomial roots L18-502

We are trying to compute \ satisfying

pa(A) = 0.
The first, sobering reality: there is no explicit way to do this in general.

Theorem (Abel)

Let n > 5. There is ann x n matrix A, with rational entries, having an
eigenvalue \ that cannot be expressed via elementary arithmetic operations
on rational numbers (additions/subtraction, multiplication/division, rational
exponentiation).
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Polynomial roots L18-502

We are trying to compute A satisfying

pa(A) = 0.
The first, sobering reality: there is no explicit way to do this in general.

Theorem (Abel)

Let n = 5. There is an n x n matrix A, with rational entries, having an
eigenvalue \ that cannot be expressed via elementary arithmetic operations
on rational numbers (additions/subtraction, multiplication/division, rational
exponentiation).

Note that this contrasts with other operations like LU factorizations, QR

factorizations, determinants, ....
Na| 21ty veghore.)
The result: we cannot obtain explicit expressions for eigenvalues in general.

We must build approximations from iterative applications of elementary

arithmetic operations.
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Polynomial rootfinding L18-503

We are trying to compute \ satisfying
pa(A) = 0.

So our algorithm must be iterative.

There is an even bigger problem: this operation is unstable.
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Polynomial rootfinding L18-503

We are trying to compute A satisfying

pa(A\) = 0.

So our algorithm must be iterative.

There is an even bigger problem: this operation is unstable.
| ) e z2 — 2z + 1: The (relative) condition number of the roots is unbounded

2.)e [ (z —x;): tiny perturbations in monomial coefficients can cause
wild changes in roots
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Polynomial rootfinding L18-503

We are trying to compute \ satisfying
pa(A) = 0.

So our algorithm must be iterative.

There is an even bigger problem: this operation is unstable.
o 12 — 2x + 1: The (relative) condition number of the roots is unbounded

n . . . . - . .
o szl(az — xj) tiny perturbations in monomial coefficients can cause
wild changes in roots

Conclusion: rootfinding is (typically) a bad idea.
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Power iteration, | L18-504

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.
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Power iteration, | L18-504

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.

Let (le be the ordered eigenpairs of an n x n matrix A.
The orjering is such that [A\1| > |Aa| > -+
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Power iteration, | L18-504

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.

Let (A1, v1)Y_, be the ordered eigenpairs of an n x n matrix A.
The ordering is such that |A{]| > |A2| > -

The first algorithm we consider, power iteration, exercises two properties:

e For large k, HA"“ || converges to v1.

o If v~ vy, then Ra(v) := ”Hﬂ;‘”“f is approximately \j.
2
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Power iteration, Il L18-505

Here is a simplistic algorithm to compute the dominant eigenvalue of A:

Initialize with a vector v (e.g., randomly):

Av
|Av]2

2. M — Ra(v)
3. Return to step 1

1. v«
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Power iteration, Il L18-505

Here is a simplistic algorithm to compute the dominant eigenvalue of A:

Initialize with a vector v (e.g., randomly):

1 p o« Av
| Av|2

2. M — Ra(v)
3. Return to step 1

When to terminate iteration? E.g., at step 3 keep track of |Av — Av|s.

This is not a particularly useful algorithm, but it does converge.
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Power iteration, Il L18-505

Here is a simplistic algorithm to compute the dominant eigenvalue of A:

Initialize with a vector v (e.g., randomly):

Av
|Av]2

2. M — Ra(v)
3. Return to step 1

1. v«

When to terminate iteration? E.g., at step 3 keep track of |Av — Av|s.

This is not a particularly useful algorithm, but it does converge.

Theorem
If the initial vector is not orthogonal to vy, then at iteration k, power
iteration produces vector v and eigenvalue estimate \ satisfying,

v —vi], = O("), N> = 062,

where 1 = [Aa/A\1].< | ’A’ )\,l
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Deflation L18-506

We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
(n—1) x (n — 1) matrix are used.
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Deflation L18-506

We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
(n—1) x (n — 1) matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling

deflation:
If (\,v) are a “converged” eigenpair for some eigenpair of A, then define

Ay = A — \ov™,

Then the dominant eigenpair of Ay is (A2, v2)
Subsequently, power iteration can be used to compute As.

Raam A Sywmeﬂm, = ,4: EAJ \{:’V¢¥
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Deflation L18-506

We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
(n—1) x (n — 1) matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling

deflation:
If (\,v) are a “converged” eigenpair for some eigenpair of A, then define

Ay = A — \ov™,

Then the dominant eigenpair of Ay is (A2, v2)
Subsequently, power iteration can be used to compute As.

A full power iteration algorithm employs the basic iterative scheme, along
with a termination criterion, and some deflation technique.
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