













































































































L18-S00

Eigenvalue algorithms: Power iteration

MATH 6610 Lecture 18

October 19, 2020

Trefethen & Bau: Lectures 12, 25

MATH 6610-001 – U. Utah Eigenvalue algorithms



L18-S01Eigenvalues

We’ve seen that eigenvalues, i.e., numbers � such that

Av “ �v, pv ‰ 0q

play fundamental roles in linear algebra. How are eigenvalues computed?

Perhaps the conceptually easiest strategy is to compute roots of a polynomial:

Av “ �v ñ pAp�q :“ det pA ´ �Iq “ 0.

While conceptually easy, this turns out to be very difficult practically.
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L18-S02Polynomial roots

We are trying to compute � satisfying

pAp�q “ 0.

The first, sobering reality: there is no explicit way to do this in general.

Theorem (Abel)
Let n • 5. There is an n ˆ n matrix A, with rational entries, having an
eigenvalue � that cannot be expressed via elementary arithmetic operations
on rational numbers (additions/subtraction, multiplication/division, rational
exponentiation).
Note that this contrasts with other operations like LU factorizations, QR
factorizations, determinants, ....

The result: we cannot obtain explicit expressions for eigenvalues in general.
We must build approximations from iterative applications of elementary
arithmetic operations.
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L18-S03Polynomial rootfinding

We are trying to compute � satisfying

pAp�q “ 0.

So our algorithm must be iterative.

There is an even bigger problem: this operation is unstable.

x2 ´ 2x ` 1: The (relative) condition number of the roots is unbounded
±n

j“1px ´ xjq: tiny perturbations in monomial coefficients can cause
wild changes in roots

Conclusion: rootfinding is (typically) a bad idea.
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L18-S04Power iteration, I
We’ll specialize discussion to Hermitian matrices, with simple eigenvalues.

Let p�1, v1qNn“1 be the ordered eigenpairs of an n ˆ n matrix A.
The ordering is such that |�1| ° |�2| ° ¨ ¨ ¨
The first algorithm we consider, power iteration, exercises two properties:

For large k, Akx
}Akx}2 converges to v1.

If v « v1, then RApvq :“ v˚Av
}v}22 is approximately �1.
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L18-S05Power iteration, II
Here is a simplistic algorithm to compute the dominant eigenvalue of A:
Initialize with a vector v (e.g., randomly):

1. v – Av
}Av}2

2. � – RApvq
3. Return to step 1

When to terminate iteration? E.g., at step 3 keep track of }Av ´ �v}2.
This is not a particularly useful algorithm, but it does converge.

Theorem
If the initial vector is not orthogonal to v1, then at iteration k, power
iteration produces vector v and eigenvalue estimate � satisfying,

}v ´ v1}2 “ Oprkq, }� ´ �1} “ Opr2kq,

where r “ |�2{�1|.
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L18-S06Deflation
We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
pn ´ 1q ˆ pn ´ 1q matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling
deflation:
If p�, vq are a “converged” eigenpair for some eigenpair of A, then define

A2 :“ A ´ �vv˚.

Then the dominant eigenpair of A2 is p�2, v2q
Subsequently, power iteration can be used to compute �2.

A full power iteration algorithm employs the basic iterative scheme, along
with a termination criterion, and some deflation technique.
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