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Eigenvalue algorithms: Power iteration
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Ei L18-S01
igenvalues

We've seen that eigenvalues, i.e., numbers A such that
Av =X, (v+#0)

play fundamental roles in linear algebra. How are eigenvalues computed?
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Eigenvalues L18-501

We've seen that eigenvalues, i.e., numbers A such that

Av=Xv, (v#0)
play fundamental roles in linear algebra. How are eigenvalues computed?
Perhaps the conceptually easiest strategy is to compute roots of a polynomial:

Av=X v <<  pa(\)=det(A—-A)=0.
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Eigenvalues L18-501

We've seen that eigenvalues, i.e., numbers A such that
Av=Xv, (v#0)
play fundamental roles in linear algebra. How are eigenvalues computed?
Perhaps the conceptually easiest strategy is to compute roots of a polynomial:
Av=X v <<  pa(\)=det(A—-A)=0.

While conceptually easy, this turns out to be very difficult practically.
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Polynomial roots L18-5S02

We are trying to compute \ satisfying

pa(A) =0.
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Polynomial roots L18-5S02

We are trying to compute \ satisfying
pa(A) = 0.

The first, sobering reality: there is no explicit way to do this in general.

Theorem (Abel)

Let n = 5. There is an n x n matrix A, with rational entries, having an
eigenvalue \ that cannot be expressed via elementary arithmetic operations
on rational numbers (additions/subtraction, multiplication/division, rational
exponentiation).
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Polynomial roots L18-5S02

We are trying to compute \ satisfying
pa(A) = 0.

The first, sobering reality: there is no explicit way to do this in general.

Theorem (Abel)

Let n = 5. There is an n x n matrix A, with rational entries, having an
eigenvalue \ that cannot be expressed via elementary arithmetic operations
on rational numbers (additions/subtraction, multiplication/division, rational
exponentiation).

Note that this contrasts with other operations like LU factorizations, QR
factorizations, determinants, ....

The result: we cannot obtain explicit expressions for eigenvalues in general.
We must build approximations from iterative applications of elementary
arithmetic operations.
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Polynomial rootfinding L18-S03

We are trying to compute \ satisfying
pa(A) = 0.

So our algorithm must be iterative.

There is an even bigger problem: this operation is unstable.
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Polynomial rootfinding L18-S03

We are trying to compute \ satisfying
pa(A) = 0.

So our algorithm must be iterative.
There is an even bigger problem: this operation is unstable.
e 22 — 2z + 1: The (relative) condition number of the roots is unbounded

o [[;_;(z —z;): tiny perturbations in monomial coefficients can cause
wild changes in roots
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Polynomial rootfinding L18-S03

We are trying to compute \ satisfying
pa(A) = 0.

So our algorithm must be iterative.
There is an even bigger problem: this operation is unstable.
e 22 — 2z + 1: The (relative) condition number of the roots is unbounded

o [[;_;(z —z;): tiny perturbations in monomial coefficients can cause
wild changes in roots

Conclusion: rootfinding is (typically) a bad idea.
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Power iteration, | L18-504

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.
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Power iteration, | L18-504

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.

Let (A1,v1)2_; be the ordered eigenpairs of an n x n matrix A.
The ordering is such that [A{| > |Ag| > - --

MATH 6610-001 — U. Utah Eigenvalue algorithms



Power iteration, | L18-504

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.

Let (A1,v1)2_; be the ordered eigenpairs of an n x n matrix A.
The ordering is such that [A{| > |Ag| > - --

The first algorithm we consider, power iteration, exercises two properties:

e For large k, ”Ak converges to v;.

IH

o If v ~ vy, then Ry(v) = ””v‘u“f is approximately ;.
2
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Power iteration, Il L18-505

Here is a simplistic algorithm to compute the dominant eigenvalue of A:
Initialize with a vector v (e.g., randomly):

Av
[Av]2

2. A« RA(’U)
3. Return to step 1

1. v
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Power iteration, Il L18-505

Here is a simplistic algorithm to compute the dominant eigenvalue of A:

Initialize with a vector v (e.g., randomly):

1 p e Av
[Av]2

2. A« RA(’U)
3. Return to step 1
When to terminate iteration? E.g., at step 3 keep track of ||Av — Av|2.

This is not a particularly useful algorithm, but it does converge.
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Power iteration, Il L18-505

Here is a simplistic algorithm to compute the dominant eigenvalue of A:
Initialize with a vector v (e.g., randomly):

Av
[Av]2

2. A« RA(’U)
3. Return to step 1

1. v

When to terminate iteration? E.g., at step 3 keep track of ||Av — Av|2.

This is not a particularly useful algorithm, but it does converge.

Theorem
If the initial vector is not orthogonal to vy, then at iteration k, power
iteration produces vector v and eigenvalue estimate \ satisfying,

[o —vi], = O(F), A=)l = O(*),

where r = |Aa/\].
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Deflation L18-506

We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
(n —1) x (n — 1) matrix are used.
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Deflation L18-506

We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
(n —1) x (n — 1) matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling

deflation:
If (\,v) are a “converged” eigenpair for some eigenpair of A, then define

Ay = A — v,

Then the dominant eigenpair of Ay is (Ao, v2)
Subsequently, power iteration can be used to compute As.
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Deflation L18-506

We have only discussed how to compute a single eigenvalue.

To compute the rest, deflation techniques, which reduce A to an
(n —1) x (n — 1) matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling
deflation:
If (\,v) are a “converged” eigenpair for some eigenpair of A, then define

Ay = A — v,

Then the dominant eigenpair of Ay is (Ao, v2)
Subsequently, power iteration can be used to compute As.

A full power iteration algorithm employs the basic iterative scheme, along
with a termination criterion, and some deflation technique.
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