Eigenvalue algorithms: Power iteration

MATH 6610 Lecture 18

October 19, 2020

Trefethen \& Bau: Lectures 12, 25

Eigenvalues

We've seen that eigenvalues, i.e., numbers λ such that

$$
A v=\lambda v, \quad(v \neq 0)
$$

play fundamental roles in linear algebra. How are eigenvalues computed?

Eigenvalues

We've seen that eigenvalues, i.e., numbers λ such that

$$
A v=\lambda v, \quad(v \neq 0)
$$

play fundamental roles in linear algebra. How are eigenvalues computed?
Perhaps the conceptually easiest strategy is to compute roots of a polynomial:

$$
A v=\lambda v \quad \Longleftrightarrow \quad p_{A}(\lambda):=\operatorname{det}(A-\lambda I)=0 .
$$

Eigenvalues

We've seen that eigenvalues, i.e., numbers λ such that

$$
A v=\lambda v, \quad(v \neq 0)
$$

play fundamental roles in linear algebra. How are eigenvalues computed?
Perhaps the conceptually easiest strategy is to compute roots of a polynomial:

$$
A v=\lambda v \quad \Longleftrightarrow \quad p_{A}(\lambda):=\operatorname{det}(A-\lambda I)=0 .
$$

While conceptually easy, this turns out to be very difficult practically.

Polynomial roots

We are trying to compute λ satisfying

$$
p_{A}(\lambda)=0 .
$$

Polynomial roots

We are trying to compute λ satisfying

$$
p_{A}(\lambda)=0 .
$$

The first, sobering reality: there is no explicit way to do this in general.
Theorem (Abel)
Let $n \geqslant 5$. There is an $n \times n$ matrix A, with rational entries, having an eigenvalue λ that cannot be expressed via elementary arithmetic operations on rational numbers (additions/subtraction, multiplication/division, rational exponentiation).

Polynomial roots

We are trying to compute λ satisfying

$$
p_{A}(\lambda)=0 .
$$

The first, sobering reality: there is no explicit way to do this in general.
Theorem (Abel)
Let $n \geqslant 5$. There is an $n \times n$ matrix A, with rational entries, having an eigenvalue λ that cannot be expressed via elementary arithmetic operations on rational numbers (additions/subtraction, multiplication/division, rational exponentiation).
Note that this contrasts with other operations like $L U$ factorizations, $Q R$ factorizations, determinants,

The result: we cannot obtain explicit expressions for eigenvalues in general. We must build approximations from iterative applications of elementary arithmetic operations.

Polynomial rootfinding

We are trying to compute λ satisfying

$$
p_{A}(\lambda)=0 .
$$

So our algorithm must be iterative.
There is an even bigger problem: this operation is unstable.

Polynomial rootfinding

We are trying to compute λ satisfying

$$
p_{A}(\lambda)=0 .
$$

So our algorithm must be iterative.
There is an even bigger problem: this operation is unstable.

- $x^{2}-2 x+1$: The (relative) condition number of the roots is unbounded
- $\prod_{j=1}^{n}\left(x-x_{j}\right)$: tiny perturbations in monomial coefficients can cause wild changes in roots

Polynomial rootfinding

We are trying to compute λ satisfying

$$
p_{A}(\lambda)=0 .
$$

So our algorithm must be iterative.
There is an even bigger problem: this operation is unstable.

- $x^{2}-2 x+1$: The (relative) condition number of the roots is unbounded
- $\prod_{j=1}^{n}\left(x-x_{j}\right)$: tiny perturbations in monomial coefficients can cause wild changes in roots
Conclusion: rootfinding is (typically) a bad idea.

Power iteration, I

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.
Let $\left(\lambda_{1}, v_{1}\right)_{n=1}^{N}$ be the ordered eigenpairs of an $n \times n$ matrix A. The ordering is such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots$

We'll specialize discussion to Hermitian matrices, with simple eigenvalues.
Let $\left(\lambda_{1}, v_{1}\right)_{n=1}^{N}$ be the ordered eigenpairs of an $n \times n$ matrix A.
The ordering is such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots$
The first algorithm we consider, power iteration, exercises two properties:

- For large $k, \frac{A^{k} x}{\left\|A^{k} x\right\|_{2}}$ converges to v_{1}.
- If $v \approx v_{1}$, then $R_{A}(v):=\frac{v^{*} A v}{\|v\|_{2}^{2}}$ is approximately λ_{1}.

Power iteration, II

Here is a simplistic algorithm to compute the dominant eigenvalue of A : Initialize with a vector v (e.g., randomly):

1. $v \leftarrow \frac{A v}{\|A v\|_{2}}$
2. $\lambda \leftarrow R_{A}(v)$
3. Return to step 1

Power iteration, II

Here is a simplistic algorithm to compute the dominant eigenvalue of A : Initialize with a vector v (e.g., randomly):

1. $v \leftarrow \frac{A v}{\|A v\|_{2}}$
2. $\lambda \leftarrow R_{A}(v)$
3. Return to step 1

When to terminate iteration? E.g., at step 3 keep track of $\|A v-\lambda v\|_{2}$.
This is not a particularly useful algorithm, but it does converge.

Power iteration, II

Here is a simplistic algorithm to compute the dominant eigenvalue of A : Initialize with a vector v (e.g., randomly):

1. $v \leftarrow \frac{A v}{\|A v\|_{2}}$
2. $\lambda \leftarrow R_{A}(v)$
3. Return to step 1

When to terminate iteration? E.g., at step 3 keep track of $\|A v-\lambda v\|_{2}$.
This is not a particularly useful algorithm, but it does converge.
Theorem
If the initial vector is not orthogonal to v_{1}, then at iteration k, power iteration produces vector v and eigenvalue estimate λ satisfying,

$$
\left\|v-v_{1}\right\|_{2}=\mathcal{O}\left(r^{k}\right), \quad\left\|\lambda-\lambda_{1}\right\|=\mathcal{O}\left(r^{2 k}\right)
$$

where $r=\left|\lambda_{2} / \lambda_{1}\right|$.

Deflation

We have only discussed how to compute a single eigenvalue.
To compute the rest, deflation techniques, which reduce A to an $(n-1) \times(n-1)$ matrix are used.

Deflation

We have only discussed how to compute a single eigenvalue.
To compute the rest, deflation techniques, which reduce A to an $(n-1) \times(n-1)$ matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling deflation:
If (λ, v) are a "converged" eigenpair for some eigenpair of A, then define

$$
A_{2}:=A-\lambda v v^{*} .
$$

Then the dominant eigenpair of A_{2} is $\left(\lambda_{2}, v_{2}\right)$
Subsequently, power iteration can be used to compute λ_{2}.

We have only discussed how to compute a single eigenvalue.
To compute the rest, deflation techniques, which reduce A to an $(n-1) \times(n-1)$ matrix are used.

The simplest (and neither efficient nor stable) deflation technique is Hotelling deflation:
If (λ, v) are a "converged" eigenpair for some eigenpair of A, then define

$$
A_{2}:=A-\lambda v v^{*} .
$$

Then the dominant eigenpair of A_{2} is $\left(\lambda_{2}, v_{2}\right)$
Subsequently, power iteration can be used to compute λ_{2}.
A full power iteration algorithm employs the basic iterative scheme, along with a termination criterion, and some deflation technique.

