# The Cholesky decomposition 

## MATH 6610 Lecture 17

October 16, 2020

Trefethen \& Bau: Lecture 23

## Hermitian positive-definite matrices

Assume $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite. $\left(x^{*} A_{x}>0 \forall x \in \mathbb{C}^{n} \backslash\{0\}\right)$ Our investigation of LU decompositions specializes considerably in this case.

Hermitian positive-definite matrices
Assume $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite.
Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of $A$ :

1. $-A$ is invertible
2. The diagonal entries of $A$ are real and strictly positive
3.     - If $B \in \mathbb{C}^{m \times n}$ with $m \leqslant n$ is of full rank, then $B A B^{*}$ is positive-definite
1.) $A$ is unitarily diagonalizable $w /$ positive eigenvalues.
2.) $e_{j}^{*} A e_{j}=A_{i, j}$ (for any matrix $A$ )


$$
\begin{aligned}
& \text { 3.) } \begin{array}{l}
B A B^{*} \text { is Hesmitian } \\
y \in \mathbb{C}^{m}, y \neq 0: \\
y^{*} B A B^{*} y \quad B^{x}=\left({ }^{m}\right) \\
\|\left.\right|^{\Rightarrow} B^{*} y \neq 0 \text { isince } y \neq 0 \text { and } \\
\operatorname{ker}\left(B^{*}\right)=\{0\}
\end{array} \\
& \left(B^{*} y\right)^{*} A\left(B^{x} y\right)>0 .
\end{aligned}
$$

(Hermitian)
LU on ${ }^{\vee}$ positive-definite matrices
A general positive-definite matrix $A$ has the form

$$
A=\left(\begin{array}{ccc}
a & - & v^{*} \\
\mid & & - \\
v & A_{2} & \\
\mid & & A_{2}=A_{2}^{\gamma} \\
& \\
& >0
\end{array}\right.
$$

Consider performing elimination on $A$ :
Since $a>0 \Rightarrow$ Gaussian elimination without pivoting

$$
\begin{aligned}
L_{1}^{-1} \Rightarrow L_{1} & =\left(\begin{array}{ccc}
1 & & \\
1 & 1 & \\
\frac{v}{a} & & 1 \\
1 & & \\
\hline
\end{array}\right) \\
A & =L_{1}\left(\begin{array}{ccc}
a & -v^{8}- \\
1 & & A_{2}-\frac{v v^{8}}{a} \\
0 &
\end{array}\right)
\end{aligned}
$$

## LU on positive-definite matrices

A general positive-definite matrix $A$ has the form

$$
A=\left(\begin{array}{cccc}
a & - & v^{*} & - \\
\mid & & \\
v & & A_{2} & \\
\mid & &
\end{array}\right)
$$

Consider performing elimination on $A$ :

$$
A=L_{1} B^{*}=(\begin{array}{cccc}
1 & - & 0 & - \\
\mid & & & \\
\frac{v}{a} & I & & \\
\mid & & v^{*} & - \\
\left.\begin{array}{ccc}
a & - & \\
\mid & A_{2}-\frac{v v^{*}}{a} &
\end{array}\right)
\end{array} \underbrace{\left(\begin{array}{lll} 
&
\end{array}\right)}_{B^{*}}
$$

Symmetric factorizations

$$
A=L_{1} B^{*}
$$

We can perform a single step of Gaussian elimination on $B$ :

$$
\begin{aligned}
& B=\left(\begin{array}{lll}
a & -0 & - \\
1 & A_{2}-\frac{v v^{*}}{a} \\
1 & & \Rightarrow
\end{array}\right) \\
& \text { first column of } \\
& B=\text { first colum } n \\
& \text { of } A
\end{aligned}
$$

$$
\left\{\begin{array}{l}
A=L_{1} B^{\frac{1}{d}} \\
B=L_{1}\left(\begin{array}{ll}
a-a- \\
1 & A_{2}-\frac{V V^{a}}{a}
\end{array}\right)
\end{array}\right.
$$

$$
\longrightarrow A=L_{1}\left(\begin{array}{cc}
a & -0- \\
1 & A_{2}-\frac{v v^{*}}{a} \\
1 &
\end{array}\right) L_{1}^{*}
$$

Last step: "factor out" $\sqrt{a}$

$$
\begin{aligned}
& A=L_{1}\left(\begin{array}{lllll}
\sqrt{a} & & & \\
& 1 & & \\
& & & \\
& & \ldots & \\
& & & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -0 & \\
1 & & \\
0 & & A_{2}-\frac{v v^{*}}{a} \\
1 & & \\
\sqrt{\sqrt{a}} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
\hline
\end{array}\right)^{*} L_{1}^{*} \\
& \tilde{L}_{1}=L_{1}\left(\begin{array}{llll}
\sqrt{a} & & \\
& 1 & & \\
& & 1
\end{array}\right) \Rightarrow A=\tilde{L}_{1}\left(\begin{array}{ccc}
1 & -0 \\
1 & & \\
0 & A_{2}-\frac{v v^{*}}{a} \\
1 & & \\
& &
\end{array}\right) \tilde{L}_{1}^{*}
\end{aligned}
$$

## Symmetric factorizations

$$
A=L_{1} B^{*}
$$

We can perform a single step of Gaussian elimination on $B$ :

$$
B=L_{1}\left(\begin{array}{cccc}
a & - & 0 & - \\
\mid & & \\
0 & & A_{2}-\frac{v v^{*}}{a} & \\
\mid & &
\end{array}\right)
$$

i.e.,

$$
A=L_{1}\left(\begin{array}{ccc}
a & - & 0 \\
\mid & & - \\
0 & A_{2}-\frac{v v^{*}}{a} & \\
\mid & & 0 \\
\end{array}\right) L_{1}^{*}=\widetilde{L}_{1}\left(\begin{array}{ccc}
1 & - & 0 \\
\mid & A_{2}-\frac{v v^{*}}{a} &
\end{array}\right) \widetilde{L}_{1}^{*}
$$

## The Cholesky factorization

$$
A=\widetilde{L}_{1}\left(\begin{array}{cccc}
1 & - & 0 & - \\
\mid & & & \\
0 & & A_{2}-\frac{v v^{*}}{a} &
\end{array}\right) \widetilde{L}_{1}^{*}
$$

Note that $A_{2}-\frac{v v^{*}}{a}$ must be positive definite since $\widetilde{L}_{1}$ is invertible.

$$
\begin{aligned}
& \mathcal{L}^{\prime} \text { invertible } \\
& \mathcal{L}_{1}^{-1} A L_{1}^{-z}=\left(\begin{array}{ll}
1 & -0 \\
1 & A_{2}-\frac{v v^{r}}{a}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E=\left(\begin{array}{cc}
1 & 1 \\
e_{2} & \cdots \\
1 & \\
1
\end{array}\right) \in \mathbb{R}^{n \times(n-1)} \\
& \underbrace{E^{*} T_{1}^{-1} A \tilde{L}_{1}^{-*} E=A_{2}-\frac{v v^{*}}{a}}_{\text {fall-rank }} \\
& A_{2}=\frac{v v^{*}}{a} \text { is a rank-(n-1) compressive. ot } A \\
& \Rightarrow A_{2}-\frac{v v^{*}}{a} \text { is posivive-definite. }
\end{aligned}
$$

## The Cholesky factorization

$$
A=\widetilde{L}_{1}\left(\begin{array}{cccc}
1 & - & 0 & - \\
\mid & & & \\
0 & & A_{2}-\frac{v v^{*}}{a} & \\
\mid & & &
\end{array}\right) \widetilde{L}_{1}^{*}
$$

Note that $A_{2}-\frac{v v^{*}}{q}$ must be positive definite since $\widetilde{L}_{1}$ is invertible. $\Rightarrow$ the can continue to eliminate without pivoting.

$$
\begin{aligned}
& A=\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)^{*} \\
&=: L L^{*} . \\
& \boxed{I}
\end{aligned}
$$

- Note: wee never need to pivot!


## The Cholesky factorization

$$
A=\widetilde{L}_{1}\left(\begin{array}{cccc}
1 & - & 0 & - \\
\mid & & & \\
0 & & A_{2}-\frac{v v^{*}}{a} &
\end{array}\right) \widetilde{L}_{1}^{*}
$$

Note that $A_{2}-\frac{v v^{*}}{a}$ must be positive definite since $\widetilde{L}_{1}$ is invertible.
Thus, we can repeat this process:

$$
\begin{aligned}
A & =\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)^{*} \\
& =L L^{*} .
\end{aligned}
$$

## Theorem

Every Hermitian positive definite matrix $A$ has a unique symmetric $L U$, or Cholesky, decomposition: $A=L L^{*}$, where $L$ is lower-triangular and invertible.

## Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix $A: A=P L L^{*} P^{*}$.

This could be used to pivot maximum-magnitude diagonal entries to the front.

## Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix $A: A=P L L^{*} P^{*}$.

This could be used to pivot maximum-magnitude diagonal entries to the front.

However, pivoted Cholesky decompositions have another use:
Theorem

$$
x^{*}+x \geq 0
$$

Every Hermitian positive semi-definite matrix $A$ has a pivoted Cholesky decomposition: $A=P L L^{*} P^{*}$, where $L$ is lower-triangular but need not invertible. This decomposition is in general not unique.

$$
\begin{array}{r}
\text { E.g.: } A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \Rightarrow A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
p \quad L \quad L^{*} p^{*}
\end{array}
$$

Aside:

$$
\begin{aligned}
& \therefore A=(\||\ldots|) \in \mathbb{C}^{n \times 2 \times n}, m>n \\
& a_{j}-j \text { th column of } A . \\
& A=Q R \\
& \quad G=\text { "Gramian" }(G)_{i, j}=\left\langle a_{i}, a_{j}\right\rangle
\end{aligned}
$$

If $A$ is full rank, then $G$ is postive-definite

$$
\begin{aligned}
& G=L L^{*} \\
& \text { VS. } \\
& A=Q R \longrightarrow G=A^{*} A=R^{*} R \\
& \\
& \quad \Rightarrow R^{*}=L .
\end{aligned}
$$

This is useful since in some cases we have $G$ but not $A$.

