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L17-S01
Hermitian positive-definite matrices

Assume A P nˆn is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:
A is invertible
The diagonal entries of A are real and strictly positive
If B P mˆn with m § n is of full rank, then BAB˚ is positive-definite
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L17-S02
LU on positive-definite matrices

A general positive-definite matrix A has the form

A “

¨

˚̊
˝

a ´ v˚ ´

v A2

˛

‹‹‚.

Consider performing elimination on A:

A “ L1B
˚ “

¨

˚̊
˝

1 ´ 0 ´
v
a I

˛

‹‹‚

¨

˚̊
˝

a ´ v˚ ´

0 A2 ´ vv˚
a

˛

‹‹‚
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L17-S03
Symmetric factorizations

A “ L1B
˚

We can perform a single step of Gaussian elimination on B:

B “ L1

¨

˚̊
˝

a ´ 0 ´

0 A2 ´ vv˚
a

˛

‹‹‚,

i.e.,

A “ L1

¨

˚̊
˝

a ´ 0 ´

0 A2 ´ vv˚
a

˛

‹‹‚L˚
1 “ rL1

¨

˚̊
˝

1 ´ 0 ´

0 A2 ´ vv˚
a

˛

‹‹‚rL˚
1 .
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L17-S04
The Cholesky factorization

A “ rL1

¨

˚̊
˝

1 ´ 0 ´

0 A2 ´ vv˚
a

˛

‹‹‚rL˚
1 .

Note that A2 ´ vv˚
a must be positive definite since rL1 is invertible.

Thus, we can repeat this process:

A “
´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯ ´
rL1

rL2 ¨ ¨ ¨ rLn´1

¯˚

“: LL˚.

Theorem
Every Hermitian positive definite matrix A has a unique symmetric LU, or

Cholesky, decomposition: A “ LL˚
, where L is lower-triangular and

invertible.
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L17-S05
Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix
A: A “ PLL˚P˚.

This could be used to pivot maximum-magnitude diagonal entries to the
front.

However, pivoted Cholesky decompositions have another use:

Theorem
Every Hermitian positive semi-definite matrix A has a pivoted Cholesky

decomposition: A “ PLL˚P˚
, where L is lower-triangular but need not

invertible. This decomposition is in general not unique.
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