L17-S00

The Cholesky decomposition

MATH 6610 Lecture 17

October 16, 2020

Trefethen & Bau: Lecture 23

Hermitian positive-definite matrices

L17-S01

Assume $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite. $(\chi * A_{\chi} > 0 \quad \forall \chi \in \mathbb{C}^n \setminus \{o\})$

Our investigation of LU decompositions specializes considerably in this case.

Hermitian positive-definite matrices

Assume $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:

- A is invertible
- **2.** The diagonal entries of A are real and strictly positive
- ightharpoonup• If $B \in \mathbb{C}^{m \times n}$ with $m \leq n$ is of full rank, then BAB^* is positive-definite

3.)
$$BAB^*$$
 is Hermitian $B^* = \begin{pmatrix} n \\ y \in C^m, y \neq 0 \end{pmatrix}$: $y^* BAB^* y = \begin{pmatrix} n \\ y \neq 0 \end{pmatrix}$
 $\begin{pmatrix} f = 2 B^* y \neq 0 \\ ker(B^*) = 50 \end{pmatrix}$ and $ker(B^*) = 50 \end{pmatrix}$
 $(B^* y)^* A(B^* y) > 0.$

(Hormitian) LU on^vpositive-definite matrices

A general positive-definite matrix A has the form

$$A = \begin{pmatrix} a & - & v^* & - \\ | & & \\ v & & A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2^* \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2 = A_2 \\ A_2 = A_2 \end{pmatrix} \cdot \begin{pmatrix} A_2$$

Consider performing elimination on A:

Since and => Gaussian elimination without proting $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \begin{pmatrix} A \\ A \\ z \\ 0 \\ A \\ z \\ 1 \\ \end{vmatrix} = \begin{pmatrix} a - v^* - i \\ i \\ 0 \\ i \\ z \\ a \\ \end{vmatrix}$ MATH 6610-001 – U. Utah

The Cholesky decomposition

L17-S02

$$L_{1}^{-1} \Rightarrow L_{1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ \frac{v}{a} & 1 \\ 1 & 1 \end{pmatrix}$$
$$A = L_{1} \begin{pmatrix} a - v^{*} - 1 \\ 0 & A_{2} - \frac{vv^{*}}{a} \\ 1 & 1 \end{pmatrix}$$

LU on positive-definite matrices

A general positive-definite matrix \boldsymbol{A} has the form

$$A = \begin{pmatrix} a & - & v^* & - \\ | & & & \\ v & & A_2 & \\ | & & & \end{pmatrix}.$$

Consider performing elimination on A:

$$A = L_1 B^* = \begin{pmatrix} 1 & - & 0 & - \\ | & & & \\ \frac{v}{a} & I & & \\ | & & & \end{pmatrix} \begin{pmatrix} a & - & v^* & - \\ | & & \\ 0 & A_2 - \frac{vv^*}{a} & \\ | & & \\ \end{pmatrix}$$

L17-S02

Symmetric factorizations

L17-S03

 $A = L_1 B^*$

We can perform a single step of Gaussian elimination on B:

MATH 6610-001 – U. Utah

The Cholesky decomposition

Symmetric factorizations

L17-S03

$$A = L_1 B^*$$

We can perform a single step of Gaussian elimination on B:

$$B = L_1 \begin{pmatrix} a & - & 0 & - \\ | & & \\ 0 & A_2 - \frac{vv^*}{a} & \\ | & & \end{pmatrix},$$

i.e.,

$$A = L_1 \begin{pmatrix} a & - & 0 & - \\ | & & \\ 0 & & A_2 - \frac{vv^*}{a} \end{pmatrix} L_1^* = \widetilde{L}_1 \begin{pmatrix} 1 & - & 0 & - \\ | & & \\ 0 & & A_2 - \frac{vv^*}{a} \end{pmatrix} \widetilde{L}_1^*.$$

The Cholesky factorization

$$A = \tilde{L}_1 \begin{pmatrix} 1 & - & 0 & - \\ | & & \\ 0 & A_2 - \frac{vv^*}{a} & \\ | & & \end{pmatrix} \tilde{L}_1^*.$$

Note that $A_2 - \frac{vv^*}{a}$ must be positive definite since \widetilde{L}_1 is invertible. \widetilde{L}_1 (Mertible \checkmark

$$\widetilde{L}'AL'' = \begin{pmatrix} 1 & -o \\ -o \\ 0 & A_2 - a \end{pmatrix}$$

L17-S04

$$E = \begin{pmatrix} 1 & 1 \\ e_2 & \cdots & e_n \end{pmatrix} \in \mathbb{R}^{n \times (n-1)}$$

$$E^* \widehat{L_1} A \widehat{L_1}^* E = A_2 - \frac{vv^*}{4}$$
full-rank
$$A_2 - \frac{vv^*}{4} \text{ is a rank-(n-1) compression of } A$$

$$\Rightarrow A_2 - \frac{vv^*}{4} \text{ is positive-definite.}$$

L17-S04

The Cholesky factorization

$$A = \tilde{L}_1 \begin{pmatrix} 1 & - & 0 & - \\ | & & \\ 0 & A_2 - \frac{vv^*}{a} & \\ | & & \end{pmatrix} \tilde{L}_1^*.$$

Note that $A_2 - \frac{vv^*}{a}$ must be positive definite since \widetilde{L}_1 is invertible. Thus, we can repeat this process:

$$A = \left(\widetilde{L}_{1}\widetilde{L}_{2}\cdots\widetilde{L}_{n-1}\right) \left(\widetilde{L}_{1}\widetilde{L}_{2}\cdots\widetilde{L}_{n-1}\right)^{*}$$

=: LL^{*} .

-Note: une never need to pivot!

L17-S04

The Cholesky factorization

$$A = \tilde{L}_1 \begin{pmatrix} 1 & - & 0 & - \\ | & & \\ 0 & A_2 - \frac{vv^*}{a} & \\ | & & \end{pmatrix} \tilde{L}_1^*.$$

Note that $A_2 - \frac{vv^*}{a}$ must be positive definite since \widetilde{L}_1 is invertible.

Thus, we can repeat this process:

$$A = \left(\widetilde{L}_1 \widetilde{L}_2 \cdots \widetilde{L}_{n-1}\right) \left(\widetilde{L}_1 \widetilde{L}_2 \cdots \widetilde{L}_{n-1}\right)^*$$

=: LL^* .

Theorem

Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition: $A = LL^*$, where L is lower-triangular and invertible.

MATH 6610-001 – U. Utah

Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix $A: A = PLL^*P^*$.

This could be used to pivot maximum-magnitude diagonal entries to the front.

Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix $A: A = PLL^*P^*$.

This could be used to pivot maximum-magnitude diagonal entries to the front.

However, pivoted Cholesky decompositions have another use:

x*Az 20

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: $A = PLL^*P^*$, where L is lower-triangular but need not invertible. This decomposition is in general not unique.

$$E_{-g}: A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \implies A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 &$$

Aside:
$$A = \left(\left| \left| \left| - \right| \right| \right) \in \mathbb{C}^{n \times n}, m \ge n$$

 $o_{j} : j \neq h$ column of A .
 $A = OR$
 $G : "Gramian" (G)_{i,j} = \langle a_{i}, o_{j} \rangle$
If A is full rank then G is positive-definite
 $G_{i} = LL^{*}$
 Us .
 $A = OR \longrightarrow G = A^{*}A = R^{*}R$
 $\implies R^{*} = L$.
This is useful since in some cases we have
 $G_{i}, but not A$.