The Cholesky decomposition

MATH 6610 Lecture 17

October 16, 2020

Trefethen \& Bau: Lecture 23

Hermitian positive-definite matrices

Assume $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite.
Our investigation of LU decompositions specializes considerably in this case.

Hermitian positive-definite matrices

Assume $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite.
Our investigation of LU decompositions specializes considerably in this case.
First we note some properties of A :

- A is invertible
- The diagonal entries of A are real and strictly positive
- If $B \in \mathbb{C}^{m \times n}$ with $m \leqslant n$ is of full rank, then $B A B^{*}$ is positive-definite

LU on positive-definite matrices

A general positive-definite matrix A has the form

$$
A=\left(\begin{array}{cccc}
a & - & v^{*} & - \\
\mid & & \\
v & & A_{2} & \\
\mid & &
\end{array}\right)
$$

Consider performing elimination on A :

LU on positive-definite matrices

A general positive-definite matrix A has the form

$$
A=\left(\begin{array}{cccc}
a & - & v^{*} & - \\
\mid & & \\
v & & A_{2} & \\
\mid & &
\end{array}\right) .
$$

Consider performing elimination on A :

$$
A=L_{1} B^{*}=\left(\begin{array}{cccc}
1 & - & 0 & - \\
\mid & & & \\
\frac{v}{a} & I & & \\
\mid & &
\end{array}\right)\left(\begin{array}{cccc}
a & - & v^{*} & - \\
\mid & & \\
0 & & A_{2}-\frac{v v^{*}}{a} & \\
\mid & &
\end{array}\right)
$$

Symmetric factorizations

$$
A=L_{1} B^{*}
$$

We can perform a single step of Gaussian elimination on B :

Symmetric factorizations

$$
A=L_{1} B^{*}
$$

We can perform a single step of Gaussian elimination on B :

$$
B=L_{1}\left(\begin{array}{cccc}
a & - & 0 & - \\
\mid & & \\
0 & A_{2}-\frac{v v^{*}}{a} & \\
\mid & &
\end{array}\right),
$$

i.e.,

$$
A=L_{1}\left(\begin{array}{cccc}
a & - & 0 & - \\
\mid & & A_{2}-\frac{v v^{*}}{a} & \\
0 & & & 0 \\
\hline
\end{array}\right) L_{1}^{*}=\widetilde{L}_{1}\left(\begin{array}{cccc}
1 & - & 0 & \\
0 & A_{2}-\frac{v v^{*}}{a} &
\end{array}\right) \widetilde{L}_{1}^{*}
$$

The Cholesky factorization

$$
A=\widetilde{L}_{1}\left(\begin{array}{ccc}
1 & - & 0 \\
\mid & - \\
0 & A_{2}-\frac{v v^{*}}{a} & \\
\mid & & \widetilde{L}_{1}^{*}
\end{array}\right.
$$

Note that $A_{2}-\frac{v v^{*}}{a}$ must be positive definite since \widetilde{L}_{1} is invertible.

The Cholesky factorization

$$
A=\widetilde{L}_{1}\left(\begin{array}{ccc}
1 & - & 0 \\
\mid & & - \\
0 & A_{2}-\frac{v v^{*}}{a} & \\
\mid & & \widetilde{L}_{1}^{*} \\
\end{array}\right.
$$

Note that $A_{2}-\frac{v v^{*}}{a}$ must be positive definite since \widetilde{L}_{1} is invertible.
Thus, we can repeat this process:

$$
\begin{aligned}
A & =\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)^{*} \\
& =: L L^{*} .
\end{aligned}
$$

The Cholesky factorization

$$
A=\widetilde{L}_{1}\left(\begin{array}{ccc}
1 & - & 0 \\
\mid & & - \\
0 & A_{2}-\frac{v v^{*}}{a} & \\
\mid & & \widetilde{L}_{1}^{*}
\end{array}\right.
$$

Note that $A_{2}-\frac{v v^{*}}{a}$ must be positive definite since \widetilde{L}_{1} is invertible.
Thus, we can repeat this process:

$$
\begin{aligned}
A & =\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)\left(\widetilde{L}_{1} \widetilde{L}_{2} \cdots \widetilde{L}_{n-1}\right)^{*} \\
& =: L L^{*} .
\end{aligned}
$$

Theorem

Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition: $A=L L^{*}$, where L is lower-triangular and invertible.

Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix $A: A=P L L^{*} P^{*}$.

This could be used to pivot maximum-magnitude diagonal entries to the front.

Pivoted Cholesky

One can perform symmetric pivoting on a Hermitian positive-definite matrix $A: A=P L L^{*} P^{*}$.

This could be used to pivot maximum-magnitude diagonal entries to the front.

However, pivoted Cholesky decompositions have another use:

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: $A=P L L^{*} P^{*}$, where L is lower-triangular but need not invertible. This decomposition is in general not unique.

