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The Cholesky decomposition



Hermitian positive-definite matrices L17-501

Assume A € C™*"™ is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.
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Hermitian positive-definite matrices L17-501

Assume A € C™*"™ is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:
e A is invertible
@ The diagonal entries of A are real and strictly positive
o If Be C™*™ with m < n is of full rank, then BAB* is positive-definite
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LU on positive-definite matrices L17-502

A general positive-definite matrix A has the form

Consider performing elimination on A:
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LU on positive-definite matrices L17-502

A general positive-definite matrix A has the form

A=1L,B* =

a

a
|

I 0 Ay —
|

—Re— =
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Symmetric factorizations L17-503

A=1,B*

We can perform a single step of Gaussian elimination on B:
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Symmetric factorizations L17-503

A=1,B*

We can perform a single step of Gaussian elimination on B:

a — 0 —
B:Ll (‘) A2— U:Z* )

|

ie.,

a — 0 — 1 — 0 —
_ ‘ * _ ‘ T =
A=1, 0 Ag—% Li=1 0 A—% LY.
|
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The Cholesky factorization L17-S04

Note that Ay — % must be positive definite since El is invertible.
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The Cholesky factorization L17-S04

Note that Ay — % must be positive definite since El is invertible.
Thus, we can repeat this process:
~ ~ ~ ~ o~ ~ ES
A= (L1L2 e Ln—l) <L1L2 e Ln—l)
= LL*.
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The Cholesky factorization L17-S04

Note that Ay — % must be positive definite since El is invertible.
Thus, we can repeat this process:
~ o~ ~ ~ o~ ~ *
A= (Lils L) (Bila- Loy
= LL*.

Theorem

Every Hermitian positive definite matrix A has a unique symmetric LU, or
Cholesky, decomposition: A = LL*, where L is lower-triangular and
invertible.
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Pivoted Cholesky L17-505

One can perform symmetric pivoting on a Hermitian positive-definite matrix
A: A= PLL*P¥*.

This could be used to pivot maximum-magnitude diagonal entries to the
front.
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Pivoted Cholesky L17-505

One can perform symmetric pivoting on a Hermitian positive-definite matrix
A: A= PLL*P¥*.

This could be used to pivot maximum-magnitude diagonal entries to the
front.

However, pivoted Cholesky decompositions have another use:

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky
decomposition: A = PLL* P*, where L is lower-triangular but need not
invertible. This decomposition is in general not unique.
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