Pivoting and the LU factorization

MATH 6610 Lecture 16

October 14, 2020

Trefethen \& Bau: Lecture 21

LU and Gaussian elimination

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix. Recall that, if Gaussian elimination succeeds, then

$$
A=L U,
$$

where L and U are lower- and upper-triangular, respectively.

LU and Gaussian elimination

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix. Recall that, if Gaussian elimination succeeds, then

$$
A=L U,
$$

where L and U are lower- and upper-triangular, respectively.
"Standard" Gaussian elimination fails in some cases, e.g., with

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The standard approach to "fixing" this problem is pivoting, which interchanges rows and/or columns.

Pivoting, I

The standard approach to "fixing" this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

Pivoting, 1

The standard approach to "fixing" this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.
General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

Pivoting, I

The standard approach to "fixing" this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.
General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)
This results in the decomposition,

$$
A=P_{1} L_{1} P_{2} L_{2} \cdots P_{n-1} L_{n-1} U,
$$

where P_{j} is a permutation matrix that permutes row j with row k for some $k \geqslant j$.

Pivoting, II

$$
A=P_{1} L_{1} P_{2} L_{2} \cdots P_{n-1} L_{n-1} U,
$$

where P_{j} is a permutation matrix that permutes row j with row k for some $k \geqslant j$.

$$
A=P_{1} L_{1} P_{2} L_{2} \cdots P_{n-1} L_{n-1} U,
$$

where P_{j} is a permutation matrix that permutes row j with row k for some $k \geqslant j$.

One can show that $L_{j} P_{k}=P_{k} \widetilde{L}_{j}$ if $j<k$ for some other lower-triangular matrix \widetilde{L}_{j}, so that

$$
A=\left(\prod_{j=1}^{n-1} P_{j}\right)\left(\prod_{j=1}^{n-1} \widetilde{L}_{j}\right) U
$$

Pivoted LU

In fact, we can show that this row pivoting strategy always works.
Theorem
If $A \in \mathbb{C}^{n \times n}$ is invertible, then there exists

- a permutation matrix P,
- a lower-triangular matrix L,
- an upper-triangular matrix U,
such that

$$
P A=L U
$$

More pivoting

Row pivoting is not the only option.
For example, full pivoting permutes both lower rows and rightmost columns in search of a maximum-magnitude pivot.

$$
A=P_{1} L_{1} P_{2} L_{2} \cdots P_{n-1} L_{n-1} U Q_{n-1} Q_{n-2} \cdots Q_{1}
$$

where both P_{j} and Q_{j} are permutation matrices.

More pivoting

Row pivoting is not the only option.
For example, full pivoting permutes both lower rows and rightmost columns in search of a maximum-magnitude pivot.

$$
A=P_{1} L_{1} P_{2} L_{2} \cdots P_{n-1} L_{n-1} U Q_{n-1} Q_{n-2} \cdots Q_{1}
$$

where both P_{j} and Q_{j} are permutation matrices.

This achieves the full-pivoted LU decomposition,

$$
P A Q=L U .
$$

More pivoting

Row pivoting is not the only option.
For example, full pivoting permutes both lower rows and rightmost columns in search of a maximum-magnitude pivot.

$$
A=P_{1} L_{1} P_{2} L_{2} \cdots P_{n-1} L_{n-1} U Q_{n-1} Q_{n-2} \cdots Q_{1}
$$

where both P_{j} and Q_{j} are permutation matrices.
This achieves the full-pivoted LU decomposition,

$$
P A Q=L U .
$$

An alternative is rook pivoting, which performs a permutation similar to the above, except that at elimination step j, the maximum is sought only over row j and column j.

