The LU factorization

MATH 6610 Lecture 15

October 12, 2020

Trefethen \& Bau: Lecture 20

Gaussian elimination

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix, and let $b \in \mathbb{C}^{n}$ be any vector.
Our goal is to compute the solution $x \in \mathbb{C}^{n}$ to the linear system,

$$
A x=b
$$

Gaussian elimination

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix, and let $b \in \mathbb{C}^{n}$ be any vector.
Our goal is to compute the solution $x \in \mathbb{C}^{n}$ to the linear system,

$$
A x=b
$$

One "standard" way to do this starts by forming the augmented rectangular matrix

$$
\left(\begin{array}{ll}
A & b
\end{array}\right) \in \mathbb{C}^{n \times(n+1)},
$$

and proceeds to perform elimination steps to transform the left $n \times n$ block into the identity matrix.

Row operations, I

If we record the row operations needed to perform Gaussian elimination, then we can work only on the matrix A.

Consider a matrix A with columns $\left(a_{j}\right)_{j=1}^{n}$:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right), \quad a_{j}=\left(\begin{array}{c}
a_{j, 1} \\
a_{j, 2} \\
\vdots \\
a_{j, n}
\end{array}\right)
$$

Row operations, II

After row operations that transform the first column to a multiple of e_{1}, we have

$$
A=L_{1} A_{2}, \quad L_{1}=\left(\begin{array}{cccc}
\mid & - & 0_{1 \times(n-1)} & - \\
\ell & & I_{(n-1) \times(n-1)} & \\
\mid & &
\end{array}\right)
$$

with A_{2} the matrix

$$
A_{2}=\left(\begin{array}{cccc}
a_{1,1} & \mid & & \mid \\
0 & a_{2}^{(2)} & \cdots & a_{n}^{(2)} \\
\vdots & & & \\
0 & \mid & & \mid
\end{array}\right)
$$

Row operations, III

If we continue triangular elimination from A_{2}, until the last column we obtain,

$$
A=L_{1} \cdots L_{n-1} A_{n}
$$

where A_{n} is an upper-triangular matrix, and each L_{j} has the form,

$$
L_{j}=\left(\begin{array}{ccccccc}
\mid & & \mid & \mid & \mid & & \mid \\
e_{1} & \cdots & e_{j-1} & \ell_{j} & e_{j+1} & \cdots & e_{n} \\
\mid & & \mid & \mid & \mid & & \mid
\end{array}\right)
$$

Row operations, III

If we continue triangular elimination from A_{2}, until the last column we obtain,

$$
A=L_{1} \cdots L_{n-1} A_{n},
$$

where A_{n} is an upper-triangular matrix, and each L_{j} has the form,

$$
L_{j}=\left(\begin{array}{ccccccc}
\mid & & \mid & \mid & \mid & & \mid \\
e_{1} & \cdots & e_{j-1} & \ell_{j} & e_{j+1} & \cdots & e_{n} \\
\mid & & \mid & \mid & \mid & & \mid
\end{array}\right)
$$

Note that each L_{j} is lower triangular, and one can show that

$$
L_{j} L_{j}+1=\left(\begin{array}{llllllll}
e_{1} & \cdots & e_{j-1} & \ell_{j} & \ell_{j+1} & e_{j+2} & \cdots & e_{n}
\end{array}\right),
$$

so that $L:=\prod_{j=1}^{n-1} L_{j}$ is also upper-triangular.

The LU factorization

We have just shown that, if all our elimination steps successfully complete, then

$$
A=L U,
$$

where L is lower-triangular, and U is upper-triangular.

The LU factorization

We have just shown that, if all our elimination steps successfully complete, then

$$
A=L U,
$$

where L is lower-triangular, and U is upper-triangular.
How can the steps fail?
Theorem
A has an $L U$ decomposition if and only if $\operatorname{det} A_{j} \neq 0$ for all $j=1, \ldots, n$, where A_{j} is the principal (upper-left) $j \times j$ submatrix of A.

LU factorization utility

The LU factorization/decomposition has several uses;

- It's how we solve linear systems

LU factorization utility

The LU factorization/decomposition has several uses;

- It's how we solve linear systems
- If an $L U$ factorization for A is available, then solving $A x=b$ requires only $\mathcal{O}\left(n^{2}\right)$ operations.

LU factorization utility

The LU factorization/decomposition has several uses;

- It's how we solve linear systems
- If an $L U$ factorization for A is available, then solving $A x=b$ requires only $\mathcal{O}\left(n^{2}\right)$ operations.
- $\operatorname{det} A=\operatorname{det} L \operatorname{det} U$.

