Least-squares problems

MATH 6610 Lecture 14

October 5, 2020

Trefethen \& Bau: Lecture 11

Least-squares problems

If $A \in C^{m \times n}$ and $b \in \mathbb{C}^{n}$, we are interested in computing the least-squares solution to

$$
A x=b
$$

This arises in several situations, e.g., data fitting.

Least-squares solutions

The following is a result we have essentially already proven:
Theorem
Suppose $A \in \mathbb{C}^{m \times n}$ has full column rank (n). Then, for any $b \in \mathbb{C}^{n}$, there is a unique solution x that solves

$$
A x=b
$$

in the least-square sense. Furthermore, this solution x is the unique solution to $A^{*} A x=A^{*} b$, and the residual $r:=b-A x$ is orthogonal to range (A).

Least-squares solutions

The following is a result we have essentially already proven:
Theorem
Suppose $A \in \mathbb{C}^{m \times n}$ has full column rank (n). Then, for any $b \in \mathbb{C}^{n}$, there is a unique solution x that solves

$$
A x=b
$$

in the least-square sense. Furthermore, this solution x is the unique solution to $A^{*} A x=A^{*} b$, and the residual $r:=b-A x$ is orthogonal to range (A).

The system $A^{*} A x=A^{*} b$ is called the normal equations.

Computational solutions

While the normal equations are typically useful for analysis, they are typically not used for computation.

$$
A=Q R \quad \Longrightarrow \quad x=R^{-1} Q^{*} b
$$

In most cases, the $Q R$ decomposition is used, largely for stability reasons.

