L13-S00

Householder Reflectors Modified Gram-Schmidt

MATH 6610 Lecture 13

October 2, 2020

Trefethen & Bau: Lecture 10

MATH 6610-001 - U. Utah

Orthogonalization

The main goal of orthogonalization:

Given $\{a_j\}_{j=1}^n \subset \mathbb{C}^m$, compute $\{q_j\}_{j=1}^n$ such that:

 $\langle q_j, q_k \rangle = \delta_{j,k}, \qquad \text{span}\{a_1, \dots, a_n\} = \text{span}\{q_1, \dots, q_n\}$ $\text{Span}\{a_1, \dots, a_n\} = \text{span}\{q_1, \dots, q_n\}$

L13-S01

Orthogonalization

The main goal of orthogonalization:

Given $\{a_j\}_{j=1}^n \subset \mathbb{C}^m$, compute $\{q_j\}_{j=1}^n$ such that:

$$\langle q_j, q_k \rangle = \delta_{j,k}, \qquad \operatorname{span}\{a_1, \dots, a_n\} = \operatorname{span}\{q_1, \dots, q_n\}$$

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

$$A = QR, \quad A = \begin{pmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{pmatrix}, \quad Q = \begin{pmatrix} | & | & | & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & | & | \end{pmatrix},$$

with R upper triangular.

L13-S01

Orthogonalization

The main goal of orthogonalization:

Given $\{a_j\}_{j=1}^n \subset \mathbb{C}^m$, compute $\{q_j\}_{j=1}^n$ such that:

$$\langle q_j, q_k \rangle = \delta_{j,k}, \qquad \operatorname{span}\{a_1, \dots, a_n\} = \operatorname{span}\{q_1, \dots, q_n\}$$

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

$$A = QR, \quad A = \begin{pmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{pmatrix}, \quad Q = \begin{pmatrix} | & | & | & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & | & | \end{pmatrix},$$

with R upper triangular.

We've seen "classical" (unstable) Gram-Schmidt and "modified" Gram-Schmidt.

(Cf. demos)

Householder reflectors

113-S02

Let P be an orthogonal projection matrix. Then I - 2P is Hermitian, unitary, and involutory.

PECaxa $P \in C^{n \times n}$ $p^2 = p$, $p^{\pm} = p$ $p^2 = p$, $p^{\pm} = p$, $p^{\pm} = p$ $p^2 = p$, $p^{\pm} =$ $A^{-1} = A$ (AA = I)I-2P is unitary + Hermitran: HW I-2P is involutory: direct computation Def'n: A Householder reflectur is any matrix I-2P, where P is an orthogonal projector.

Householder reflectors

L13-S02

Let P be an orthogonal projection matrix. Then I - 2P is Hermitian, unitary, and involutory.

Thus, application of this matrix, $x \mapsto (I - 2P)x$, is well-conditioned.

In particular, if P is a rank-1 projector, then there is a unit vector v such that

$$P = vv^* \cdot \left(\left\| v \right\|_2^2 \right)$$

(And in particular, $x \mapsto (I - 2P)x$ does <u>not</u> require (expensive) matrix-vector multiplications.)

 $\int (1-2P) \chi = (1-2vv^{*}) \chi = \chi - 2v (v^{*}\chi)$ $\int \frac{1}{1} IP$ vector
subtraction.

Use of Householder reflectors

Our main use of these reflectors is the following: scalar Given $x \in \mathbb{C}^m$, we want to achieve: $||x||e^{i\theta}e_1.$ Householder reflector xe,=(1,0,0...0)*∈(C^m for some $\theta \in [0, 2\pi)$. 21(For now: keep things simple and assume Q=O.) sponser. f.m.? want HR that reflects around this

We want to di this w/a rank-1 projector P=vvx. Want: $(I-2P)\chi = ||\chi||e$, (assuming $\theta=0$) $(I-2vv*)\chi = ||\chi||e$, $\frac{\chi - ||\chi||e_1}{2v^*\chi} = v \rightarrow this$ is a vector that points in the direction $\chi - ||\chi||e_1$.

Use of Householder reflectors

Our main use of these reflectors is the following: Given $x \in \mathbb{C}^m$, we want to achieve:

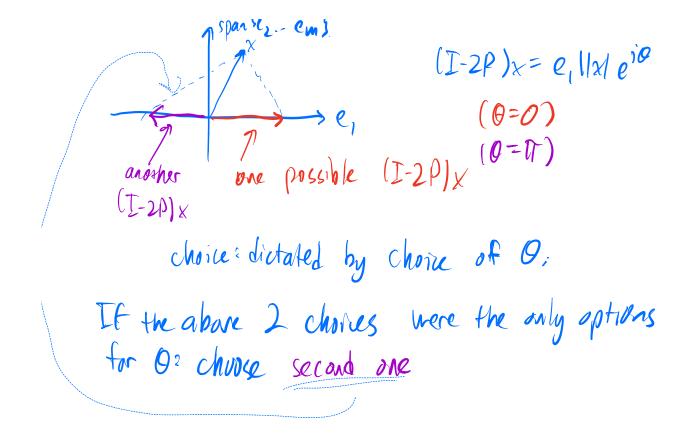
 $x \xrightarrow{\text{Householder reflector}} \|x\| e^{i\theta} e_1,$

for some $\theta \in [0, 2, \pi)$.

This is achieved by the reflector $I - 2vv^*$, with v given by

$$v = \frac{x - \|x\|e^{i\theta}e_1}{\|x - \|x\|e^{i\theta}e_1\|},$$

for arbitrary θ .



Use of Householder reflectors

Our main use of these reflectors is the following:

Given $x \in \mathbb{C}^m$, we want to achieve:

 $x \xrightarrow{\text{Householder reflector}} \|x\| e^{i\theta} e_1,$

for some $\theta \in [0, 2, \pi)$.

This is achieved by the reflector $I - 2vv^*$, with v given by

$$v = \frac{x - \|x\|e^{i\theta}e_1}{\|x - \|x\|e^{i\theta}e_1\|}, \quad (\cancel{x}, \cancel{x})$$

for arbitrary θ .

For numerical stability, this reflector should make large changes to x, rather than small changes. Largest change achieved by selecting $\chi_{2} (\chi_{1}, \chi_{2}, \dots, \chi_{m})^{T}$

$$e^{i\theta} = -\frac{x_1}{|x_1|}.$$
 (1)

Use of Householder reflectors, II

We now have the following procedure: Given $x \in \mathbb{C}^m$, we compute $v \in \mathbb{C}^m$ such that

$$(I-2P)x = (I-vv^*)x = c e_1,$$

2

for some scalar $c \in C$.

Use of Householder reflectors, II

We now have the following procedure: Given $x \in \mathbb{C}^m$, we compute $v \in \mathbb{C}^m$ such that

$$(I-2P)x = (I-vv^*)x = c e_1,$$

for some scalar $c \in C$.

Put another way: we can, via an efficiently-applicable unitary transform, map x to e_1 .

A new viewpoint on ${\cal Q}{\cal R}$

Given a matrix A, all versions of Gram-Schmidt perform operations associated with a triangular matrix R^{-1} ,

 $A \longrightarrow AR^{-1} = Q$

Thus, this is "triangular orthogonalization".

orthigonalization (of A) by means of triangular (linear-algebraic) operations.

113-S05

A new viewpoint on ${\cal Q}{\cal R}$

Given a matrix A, all versions of Gram-Schmidt perform operations associated with a triangular matrix R^{-1} ,

$$A \longrightarrow AR^{-1} = Q$$

Thus, this is "triangular orthogonalization".

We can use Householder reflectors to instead perform:

$$A \longrightarrow Q^*A = R,$$

which is an "orthogonal triangularization".

How?

$$A = \begin{pmatrix} x & x & x & --x \\ x & x & x & --x \\ x & x & x & --x \\ y & y & x & --x \\ x & x & x & --x \end{pmatrix}$$

1.) Generate a HR that transforms first column of
A to (a multiple of)
$$e_1$$
.
 $a_1 = (I - 2v_1v_1^*)$ (HR)
 $a_1A = \begin{pmatrix} x & x & y & y \\ 0 & x & y & y & y \\ 0 & x & y & y & y & y \end{pmatrix}$
2.) Generate a HR in C^{n-1} that vellects the
 $(n-1)$ -vector in column 2 corresponding to
truncating first element. (A)
 $a_2 = (I - 2v_2v_2^*)$ (HR) $a_2 \in C^{(n-1)}x^{(n-1)}$
 $\overline{a}_2 = \begin{pmatrix} I & 0 \\ 0 & a_2 \end{pmatrix} \in C^{m\times m}$ and is unitary.
 $\overline{a}_L a_1 A = \begin{pmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & -x \end{pmatrix}$
Continue
 $\overline{a}_{K}^{m-1}\overline{a}_{K-2}^{m-2} - \overline{a}_2a_1 A = \begin{pmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & -x \end{pmatrix}$

A new viewpoint on ${\cal Q}{\cal R}$

Given a matrix A, all versions of Gram-Schmidt perform operations associated with a triangular matrix R^{-1} ,

$$A \longrightarrow AR^{-1} = Q$$

Thus, this is "triangular orthogonalization".

We can use Householder reflectors to instead perform:

$$A \longrightarrow Q^*A = R,$$

which is an "orthogonal triangularization".

We expect the latter to be more stable since we are simply applying unitary (well-conditioned) matrices to A.

There is one more orthogonalization strategy: Grivens' Rotations

(This is in fact what many implementations of QR decompositions use.)

MATH 6610-001 – U. Utah