
L13-S00

Modified Gram-Schmidt

MATH 6610 Lecture 13

October 2, 2020

Trefethen & Bau: Lecture 10

MATH 6610-001 – U. Utah MGS

 



L13-S01Orthogonalization

The main goal of orthogonalization:

Given tajunj“1 Ä m, compute tqjunj“1 such that:

xqj , qky “ �j,k, spanta1, . . . , anu “ spantq1, . . . , qnu

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

A “ QR, A “
¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, Q “
¨

˝ q1 q2 ¨ ¨ ¨ qn

˛

‚,

with R upper triangular.

We’ve seen “classical” (unstable) Gram-Schmidt and “modified”
Gram-Schmidt.
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L13-S02Householder reflectors
Let P be an orthogonal projection matrix. Then I ´ 2P is Hermitian, unitary,
and involutory.

Thus, application of this matrix, x fiÑ pI ´ 2P qx, is well-conditioned.

In particular, if P is a rank-1 projector, then there is a unit vector v such that

P “ vv˚.

(And in particular, x fiÑ pI ´ 2P qx does not require (expensive) matrix-vector
multiplications.)
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L13-S03Use of Householder reflectors
Our main use of these reflectors is the following:

Given x P m, we want to achieve:

x
Householder reflector›Ñ }x}ei✓e1,

for some ✓ P r0, 2,⇡q.

This is achieved by the reflector I ´ 2vv˚, with v given by

v “ x ´ }x}ei✓e1
}x ´ }x}ei✓e1} ,

for arbitrary ✓.

For numerical stability, this reflector should make large changes to x, rather
than small changes.
Largest change achieved by selecting

ei✓ “ ´ x1

|x1| .
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L13-S04Use of Householder reflectors, II
We now have the following procedure:
Given x P m, we compute v P m such that

pI ´ 2P qx “ pI ´ vv˚qx “ c e1,

for some scalar c P C.

Put another way: we can, via an efficiently-applicable unitary transform, map
x to e1.
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L13-S05A new viewpoint on QR

Given a matrix A, all versions of Gram-Schmidt perform operations
associated with a triangular matrix R´1,

A ›Ñ AR´1 “ Q

Thus, this is “triangular orthogonalization”.

We can use Householder reflectors to instead perform:

A ›Ñ Q˚A “ R,

which is an “orthogonal triangularization”.

We expect the latter to be more stable since we are simply applying unitary
(well-conditioned) matrices to A.

(This is in fact what many implementations of QR decompositions use.)
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