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Orthogonalization L13-501
The main goal of orthogonalization:
Given {a;}7_; < €™, compute {g;}7_; such that:

{qj,qk) = 0k, span{ay,...,ay} = span{qi, ..., qn}
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Orthogonalization L13-501

The main goal of orthogonalization:

Given {a;}"_, < €™, compute {g;}"_, such that:
JSj=1 JI5=1

{qj,qk) = 0, span{ay,...,ay} = span{qi, ..., qn}

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

A=QR, A= a1 ay - an |, Q= a1 9 - qn |,

with R upper triangular.

MATH 6610-001 — U. Utah MGS



Orthogonalization L13-501

The main goal of orthogonalization:

Given {a;}7_; < €™, compute {g;}7_; such that:

{qj,qk) = 0, span{ay,...,ay} = span{qi, ..., qn}

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

A=QR, A= a1 ay - an |, Q= a1 9 - qn |,

with R upper triangular.

We've seen “classical” (unstable) Gram-Schmidt and “modified”
Gram-Schmidt.

(C6 dewps)
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Householder reflectors L13-502

Let P be an orthogonal projection matrix. Then I — 2P is Hermitian, unitary,

and involutory. r DW@"‘ : A Matry /4‘ ]\g M/W]l/
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Householder reflectors L13-502

Let P be an orthogonal projection matrix. Then I — 2P is Hermitian, unitary,
and involutory.

Thus, application of this matrix, x — (I — 2P)x, is well-conditioned.

In particular, if P is a rank-1 projector, then there is a unit vector v such that

vt | I=1)

J(And in particular, z — (I — 2P)x does not require (expensive) matrix-vector

multiplications.) “‘"/40‘ T
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Use of Householder reflectors L13-503

Our main use of these reflectors is the following:

Given z € C™, we want to achieve: swlar
AN
Householder reflector i0
— |zlle*”eq,
L m
for some 6 € [0, 2x7). e}‘ H 0,0.. 0)¥éa/

217)

(Por now m/) WL\MJ SIW\II(Z 4ni ASEume QZ())
SW%W%MX\ Wt R thet wellevts Ground

X/ axis,
e / \\\
- > — 6,

Iyl e,

MATH 6610-001 — U. Utah MGS



We want b 40ty w/a ek | prajectan Pzvv¥
Want: (T-2P)x = Iy ¢, /asgwmww g=0)
(T-2uv) x =(lxlle,

X~ “Y“el _ v — e I U(V(IJ‘W Yhat
2 v¥y pomte in e dilp ot on

v-I[e

' .



Use of Householder reflectors L13-503

Our main use of these reflectors is the following:

Given z € C™, we want to achieve:
Householder reflector i0
— |z]le*e
for some 0 € [0,2, 7).

This is achieved by the reflector I — 2vv*, with v given by

r — |z|ele; /
v = :
|z — llzleer]’
for arbitrary 6.
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Use of Householder reflectors L13-503

Our main use of these reflectors is the following:

Given z € C™, we want to achieve:

Householder reflector 10
e |z]e”eq,

for some 0 € [0,2, 7).

This is achieved by the reflector I — 2vv*, with v given by
r — |z|ele; |
"= el ()
|z —[z]e*e| ;

HR= T- D vy¥

For numerical stability, this reflector should make large changes to x, rather

than small changes. x= (y \T
. _ Y, << X
Largest change achieved by selecting s ‘M)

)

for arbitrary 6.
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Use of Householder reflectors, |

We now have the following procedure:
Given x € C™, we compute v € C™ such that

/
MQMA

for some scalar c e C. 2

I -2P)z = (I —vv™)x =cey,
( )z = ( A )

L13-S04
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Use of Householder reflectors, Il L13-504

We now have the following procedure:
Given x € C™, we compute v € C™ such that

(I —2P)x = (I —vv™)x = ceq,
for some scalar ce C.

Put another way: we can, via an efficiently-applicable unitary transform, map

T to e;q. /’
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A new viewpoint on QR L13-505

Given a matrix A, all versions of Gram-Schmidt perform operations
associated with a triangular matrix R,

A— AR =0Q

Thus, this is “triangular orthogonalization”.
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A new viewpoint on QR L13-S05

Given a matrix A, all versions of Gram-Schmidt perform operations
associated with a triangular matrix R,

A— AR =Q
Thus, this is “triangular orthogonalization”.

We can use Householder reflectors to instead perform:

A— QA =R,
which is an “orthogonal triangularization”.
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A new viewpoint on QR L13-505

Given a matrix A, all versions of Gram-Schmidt perform operations
associated with a triangular matrix R,

A— AR =Q
Thus, this is “triangular orthogonalization”.
We can use Householder reflectors to instead perform:
A— QA =R,
which is an “orthogonal triangularization”.

We expect the latter to be more stable since we are simply applying unitary
(well-conditioned) matrices to A.

(This is in fact what many implementations of QR decompositions use.)
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