Modified Gram-Schmidt

MATH 6610 Lecture 13

October 2, 2020

Trefethen \& Bau: Lecture 10

Orthogonalization

The main goal of orthogonalization:
Given $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{C}^{m}$, compute $\left\{q_{j}\right\}_{j=1}^{n}$ such that:

$$
\left\langle q_{j}, q_{k}\right\rangle=\delta_{j, k}, \quad \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}
$$

Orthogonalization

The main goal of orthogonalization:
Given $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{C}^{m}$, compute $\left\{q_{j}\right\}_{j=1}^{n}$ such that:

$$
\left\langle q_{j}, q_{k}\right\rangle=\delta_{j, k}, \quad \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}
$$

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

$$
A=Q R, \quad A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right), \quad Q=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
q_{1} & q_{2} & \cdots & q_{n} \\
\mid & \mid & & \mid
\end{array}\right),
$$

with R upper triangular.

Orthogonalization

The main goal of orthogonalization:
Given $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{C}^{m}$, compute $\left\{q_{j}\right\}_{j=1}^{n}$ such that:

$$
\left\langle q_{j}, q_{k}\right\rangle=\delta_{j, k}, \quad \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}
$$

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

$$
A=Q R, \quad A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right), \quad Q=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
q_{1} & q_{2} & \cdots & q_{n} \\
\mid & \mid & & \mid
\end{array}\right),
$$

with R upper triangular.
We've seen "classical" (unstable) Gram-Schmidt and "modified" Gram-Schmidt.

Householder reflectors

Let P be an orthogonal projection matrix. Then $I-2 P$ is Hermitian, unitary, and involutory.

Householder reflectors

Let P be an orthogonal projection matrix. Then $I-2 P$ is Hermitian, unitary, and involutory.

Thus, application of this matrix, $x \mapsto(I-2 P) x$, is well-conditioned.
In particular, if P is a rank- 1 projector, then there is a unit vector v such that

$$
P=v v^{*} .
$$

(And in particular, $x \mapsto(I-2 P) x$ does not require (expensive) matrix-vector multiplications.)

Use of Householder reflectors

Our main use of these reflectors is the following:
Given $x \in \mathbb{C}^{m}$, we want to achieve:

$$
x \quad \text { Householder reflector } \quad\|x\| e^{i \theta} e_{1}
$$

for some $\theta \in[0,2, \pi)$.

Use of Householder reflectors

Our main use of these reflectors is the following:
Given $x \in \mathbb{C}^{m}$, we want to achieve:

$$
x \xrightarrow{\text { Householder reflector }}\|x\| e^{i \theta} e_{1},
$$

for some $\theta \in[0,2, \pi)$.
This is achieved by the reflector $I-2 v v^{*}$, with v given by

$$
v=\frac{x-\|x\| e^{i \theta} e_{1}}{\|x-\| x\left\|e^{i \theta} e_{1}\right\|},
$$

for arbitrary θ.

Use of Householder reflectors

Our main use of these reflectors is the following:
Given $x \in \mathbb{C}^{m}$, we want to achieve:

$$
x \xrightarrow{\text { Householder reflector }}\|x\| e^{i \theta} e_{1},
$$

for some $\theta \in[0,2, \pi)$.
This is achieved by the reflector $I-2 v v^{*}$, with v given by

$$
v=\frac{x-\|x\| e^{i \theta} e_{1}}{\|x-\| x\left\|e^{i \theta} e_{1}\right\|},
$$

for arbitrary θ.
For numerical stability, this reflector should make large changes to x, rather than small changes.
Largest change achieved by selecting

$$
e^{i \theta}=-\frac{x_{1}}{\left|x_{1}\right|}
$$

Use of Householder reflectors, II

We now have the following procedure:
Given $x \in \mathbb{C}^{m}$, we compute $v \in \mathbb{C}^{m}$ such that

$$
(I-2 P) x=\left(I-v v^{*}\right) x=c e_{1},
$$

for some scalar $c \in C$.

Use of Householder reflectors, II

We now have the following procedure:
Given $x \in \mathbb{C}^{m}$, we compute $v \in \mathbb{C}^{m}$ such that

$$
(I-2 P) x=\left(I-v v^{*}\right) x=c e_{1},
$$

for some scalar $c \in C$.
Put another way: we can, via an efficiently-applicable unitary transform, map x to e_{1}.

A new viewpoint on $Q R$

Given a matrix A, all versions of Gram-Schmidt perform operations associated with a triangular matrix R^{-1},

$$
A \longrightarrow A R^{-1}=Q
$$

Thus, this is "triangular orthogonalization".

A new viewpoint on $Q R$

Given a matrix A, all versions of Gram-Schmidt perform operations associated with a triangular matrix R^{-1},

$$
A \longrightarrow A R^{-1}=Q
$$

Thus, this is "triangular orthogonalization".
We can use Householder reflectors to instead perform:

$$
A \longrightarrow Q^{*} A=R,
$$

which is an "orthogonal triangularization".

A new viewpoint on $Q R$

Given a matrix A, all versions of Gram-Schmidt perform operations associated with a triangular matrix R^{-1},

$$
A \longrightarrow A R^{-1}=Q
$$

Thus, this is "triangular orthogonalization".
We can use Householder reflectors to instead perform:

$$
A \longrightarrow Q^{*} A=R,
$$

which is an "orthogonal triangularization".
We expect the latter to be more stable since we are simply applying unitary (well-conditioned) matrices to A.
(This is in fact what many implementations of $Q R$ decompositions use.)

