Modified Gram-Schmidt

MATH 6610 Lecture 12

September 30, 2020

Trefethen \& Bau: Lecture 8

Orthogonalization
The main goal of orthogonalization:
Given $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{C}^{m}$, compute $\left\{q_{j}\right\}_{j=1}^{n}$ such that:

$\left\langle q_{j}, q_{k}\right\rangle=\delta_{j, k}$,

$$
\begin{aligned}
& \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\} \\
& \operatorname{span}\left\{a_{1}, \ldots a_{j}\right\}=\operatorname{span}\left\{q_{i}-q_{j}\right\}, 1 \leq j \leq n
\end{aligned}
$$

Orthogonalization

The main goal of orthogonalization:
Given $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{C}^{m}$, compute $\left\{q_{j}\right\}_{j=1}^{n}$ such that:

$$
\left\langle q_{j}, q_{k}\right\rangle=\delta_{j, k}, \quad \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}
$$

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

$$
A=Q R, \quad A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right), \quad Q=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
q_{1} & q_{2} & \cdots & q_{n} \\
\mid & \mid & & \mid
\end{array}\right),
$$

with R upper triangular. (Q has arthonarmal columns)

Recall: this generalizes. So if $A \in C^{m b n}$ matrix:

"OR decomposition"

Gram-Schmidt
The orthogonalization performed by Gram-Schmidt:

$$
u_{j}=a_{j}-P_{j-1} a_{j}, \quad \quad q_{j}=\frac{u_{j}}{\left\|u_{j}\right\|_{2}}
$$

with P_{j-1} the orthogonal projector onto $\operatorname{span}\left\{q_{1}, \ldots, q_{j-1}\right\}$.

$$
\begin{aligned}
A= & \left(\begin{array}{cc}
1 & 1 \\
a_{1} & \cdots \\
1 & 1
\end{array}\right) \quad a_{n}=Q_{j} Q_{j}^{*}, \quad Q_{j}=\left(\begin{array}{cc}
1 & 1 \\
q_{1} & \cdots \\
1 & q_{j} \\
1
\end{array}\right) \\
\text { Nate: } \quad P_{j-1} a_{j}= & \sum_{k=1}^{j-1} q_{k}\left(q_{k}^{*} a_{j}\right)
\end{aligned}
$$

Gram-Schmidt

The orthogonalization performed by Gram-Schmidt:

$$
u_{j}=a_{j}-P_{j-1} a_{j}, \quad q_{j}=\frac{u_{j}}{\left\|u_{j}\right\|},
$$

with P_{j-1} the orthogonal projector onto $\operatorname{span}\left\{q_{1}, \ldots, q_{j-1}\right\}$.
It turns out that this is an unstable algorithm.
"Modified" Gram-Schmidt

$$
\begin{aligned}
& P_{j-1}=Q_{j-1} Q_{j \dashv}^{j} \\
& u_{j}=a_{j}-P_{j-1} a_{j}, \quad q_{j}=\frac{u_{j}}{\left\|u_{j}\right\|},
\end{aligned}
$$

The cause of numerical instability is that, if a_{j} is nearly parallel to $\operatorname{span}\left\{q_{1}, \ldots, q_{j-1}\right\}$, this projection step can produce numerically incorrect results.
(We sur this in a code demo)
Problem' $\left\{q_{j}\right\}$ are not owthatarmal.
Problems a_{j} is orthigonalizd against $\left\{q_{k}\right\}_{k=1}^{j-1}$ "all at once" $\left(\operatorname{app}\left(y P_{j-1}\right)\right.$
Fix: project out oik "one at a time".

"Modified" Gram-Schmidt

$$
u_{j}=a_{j}-P_{j-1} a_{j}, \quad q_{j}=\frac{u_{j}}{\left\|u_{j}\right\|},
$$

The cause of numerical instability is that, if a_{j} is nearly parallel to $\operatorname{span}\left\{q_{1}, \ldots, q_{j-1}\right\}$, this projection step can produce numerically incorrect results.

This problem can be fixed with a "modified" version of Gram-Schmidt, which essentially does

$$
\begin{aligned}
& u_{1}=a_{j} \\
& \text { For } k=1, \ldots, j-1 \\
& \quad u_{k+1}=u_{k}-q_{k} q_{k}^{*} u_{k} \\
& q_{j}=\frac{u_{j}}{\left\|u_{j}\right\|} .
\end{aligned}
$$

Thus, the projections are computed "one at a time".

