L12-S00

Modified Gram-Schmidt

MATH 6610 Lecture 12

September 30, 2020

Trefethen & Bau: Lecture 8

Orthogonalization

L12-S01

The main goal of orthogonalization:

Given $\{a_j\}_{j=1}^n \subset \mathbb{C}^m$, compute $\{q_j\}_{j=1}^n$ such that:

 $\langle q_j, q_k \rangle = \delta_{j,k}, \qquad \operatorname{span}\{a_1, \dots, a_n\} = \operatorname{span}\{q_1, \dots, q_n\}$

L12-S01

Orthogonalization

The main goal of orthogonalization:

Given $\{a_j\}_{j=1}^n \subset \mathbb{C}^m$, compute $\{q_j\}_{j=1}^n$ such that:

 $\langle q_j, q_k \rangle = \delta_{j,k}, \qquad \text{span}\{a_1, \dots, a_n\} = \text{span}\{q_1, \dots, q_n\}$

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

$$A = QR, \quad A = \begin{pmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{pmatrix}, \quad Q = \begin{pmatrix} | & | & | & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & | & | \end{pmatrix},$$

with R upper triangular.

Gram-Schmidt

The orthogonalization performed by Gram-Schmidt:

$$u_j = a_j - P_{j-1}a_j,$$
 $q_j = \frac{u_j}{\|u_j\|},$

with P_{j-1} the orthogonal projector onto $\operatorname{span}\{q_1, \ldots, q_{j-1}\}$.

Gram-Schmidt

The orthogonalization performed by Gram-Schmidt:

$$u_j = a_j - P_{j-1}a_j,$$
 $q_j = \frac{u_j}{\|u_j\|},$

with P_{j-1} the orthogonal projector onto $\operatorname{span}\{q_1, \ldots, q_{j-1}\}$.

"Modified" Gram-Schmidt

$u_j = a_j - P_{j-1}a_j,$ $q_j = \frac{u_j}{\|u_j\|},$

The cause of numerical instability is that, if a_j is nearly parallel to $\operatorname{span}\{q_1, \ldots, q_{j-1}\}$, this projection step can produce numerically incorrect results.

"Modified" Gram-Schmidt

$u_j = a_j - P_{j-1}a_j,$ $q_j = \frac{u_j}{\|u_j\|},$

The cause of numerical instability is that, if a_j is nearly parallel to $\operatorname{span}\{q_1, \ldots, q_{j-1}\}$, this projection step can produce numerically incorrect results.

This problem can be fixed with a "modified" version of Gram-Schmidt, which essentially does

$$u_{1} = a_{j}$$

For $k = 1, \dots, j - 1$
 $u_{k+1} = u_{k} - q_{k}q_{k}^{*}u_{k}$
 $q_{j} = \frac{u_{j}}{\|u_{j}\|}.$

Thus, the projections are computed "one at a time".