# The SVD and low-rank approximation 

MATH 6610 Lecture 10

September 25, 2020

Trefethen \& Bau: Lectures 4, 5

## The SVD

Recall: a(ny) rectangular matrix $A \in \mathbb{C}^{m \times n}$ has the decomposition,

$$
A=U \Sigma V^{*},
$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.
The matrix $\Sigma \in C^{m \times n}$ is diagonal with non-negative entries.

## The SVD and eigenvalues

The singular values of $A \in \mathbb{C}^{m \times n}$,

$$
\left\{\sigma_{1}(A), \ldots, \sigma_{p}(A)\right\}, \quad p=\min (m, n), \quad \downarrow
$$

coincide with the eigenvalues $\lambda_{j}$ of both $A A^{*}$ and $A^{*} A$ :

$$
\left\{\lambda_{1}\left(A A^{*}\right), \ldots \lambda_{p}\left(A A^{*}\right)\right\}=\left\{\lambda_{1}\left(A^{*} A\right), \ldots \lambda_{p}\left(A^{*} A\right)\right\} .
$$

The SVD and fundamental spaces
The SVD gives explicit, orthonormal bases for the fundamental subspaces of A:

$$
\begin{gathered}
\operatorname{range}(A), \operatorname{ker}(A), \operatorname{range}\left(A^{*}\right), \operatorname{ker}\left(A^{*}\right) . \\
A=\sum_{j=1}^{r} \sigma_{j} u_{j} V_{j}^{*} \quad(" \operatorname{reduced} " S V D) \\
\operatorname{range}(A)=\operatorname{span}\left\{u_{1} \ldots u_{r}\right\}, \operatorname{ker}\left(A^{*}\right)=\operatorname{span}\left\{u_{r+1} \ldots\right. \\
\operatorname{ker}(A)=\operatorname{span}\left\{U_{r+1}, \ldots U_{n}\right\}, \operatorname{range}\left(A^{*}\right)=\operatorname{span}\left\{v_{1} \ldots V_{r}\right\} .
\end{gathered}
$$

Are the eigenvalues of a (square) matrix $A$ related to singular values?
Nope (Recall: $\left.\rho(A) \leq\|A\|_{2}\right)$
But if $A$ is normal: if $\lambda_{1}(A) \cdots \lambda_{n}(A)$ are ordered by magnitude (decreasing),
then: $\sigma_{j}(A)=\left|\lambda_{j}(A)\right|$.

Low-rank approximation
For a matrix $A \in \mathbb{C}^{m \times n}$, a common task is to form a rank- $r$ approximation to A:

$$
A \approx B, \quad d^{\beta \in \mathbb{C}^{m \times n}} \quad \operatorname{rank}(B) \leqslant r .
$$

not the rank of A. Some uses-
(Of course this is only interesting if $r<\operatorname{rank}(A)$.)
If $n \geq \operatorname{rank}(A):$ set $B=A$ defined rank.

## Low-rank approximation

For a matrix $A \in \mathbb{C}^{m \times n}$, a common task is to form a rank- $r$ approximation to A:

$$
A \approx B, \quad \operatorname{rank}(B) \leqslant r .
$$

(Of course this is only interesting if $r<\operatorname{rank}(A)$.)
Theorem ((Schmidt)-Eckart-Young-Mirsky)
Let $A \in \mathbb{C}^{m \times n}$ have SVD $A=U \Sigma V^{*}$. Then

$$
\sum_{j=1}^{r} \sigma_{j}\left(u_{j} v_{j}^{*}\right)=\underset{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leqslant r}}{\arg \min }\|A-B\|_{*},
$$

where $\|\cdot\|_{*}$ is either the induced 2-norm or Frobenius norm of a matrix.

## Low-rank approximation

For a matrix $A \in \mathbb{C}^{m \times n}$, a common task is to form a rank- $r$ approximation to $A$ :

$$
A \approx B, \quad \operatorname{rank}(B) \leqslant r .
$$

(Of course this is only interesting if $r<\operatorname{rank}(A)$.)
Theorem ((Schmidt)-Eckart-Young-Mirsky)
Let $A \in \mathbb{C}^{m \times n}$ have SVD $A=U \Sigma V^{*}$. Then

$$
\sum_{j=1}^{r} \sigma_{j}\left(u_{j} v_{j}^{*}\right)=\underset{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leqslant r}}{\arg \min }\|A-B\|_{*}
$$

where $\|\cdot\|_{*}$ is either the induced 2-norm or Frobenius norm of a matrix.
This theorem is the basis for innumerable applications in matrix approximation, data compression and summarization, and model acceleration and reduction.

