The SVD and low-rank approximation

MATH 6610 Lecture 10

September 25, 2020

Trefethen & Bau: Lectures 4, 5

The SVD

L10-S01

Recall: a(ny) rectangular matrix $A \in \mathbb{C}^{m \times n}$ has the decomposition,

 $A = U\Sigma V^*,$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary. The matrix $\Sigma \in C^{m \times n}$ is diagonal with non-negative entries.

The SVD and eigenvalues

The singular values of $A \in \mathbb{C}^{m \times n}$,

$$\{\sigma_1(A),\ldots,\sigma_p(A)\}, \quad p=\min(m,n),$$

coincide with the eigenvalues λ_i of <u>both</u> AA^* and A^*A :

$$\{\lambda_1(AA^*),\ldots,\lambda_p(AA^*)\}=\{\lambda_1(A^*A),\ldots,\lambda_p(A^*A)\}.$$

The SVD and fundamental spaces

The SVD gives explicit, orthonormal bases for the fundamental subspaces of $A\!\!:$

 $\operatorname{range}(A), \operatorname{ker}(A), \operatorname{range}(A^*), \operatorname{ker}(A^*).$

L10-S03

Low-rank approximation

```
L10-S04
```

For a matrix $A \in \mathbb{C}^{m \times n}$, a common task is to form a rank-r approximation to A:

 $A \approx B$, $\operatorname{rank}(B) \leq r$.

(Of course this is only interesting if $r < \operatorname{rank}(A)$.)

Low-rank approximation

For a matrix $A \in \mathbb{C}^{m \times n}$, a common task is to form a rank-r approximation to A:

 $A \approx B$, $\operatorname{rank}(B) \leq r$.

(Of course this is only interesting if $r < \mathrm{rank}(A).)$

Theorem ((Schmidt)-Eckart-Young-Mirsky) Let $A \in \mathbb{C}^{m \times n}$ have SVD $A = U\Sigma V^*$. Then

$$\sum_{j=1}^{r} \sigma_j \left(u_j v_j^* \right) = \underset{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leqslant r}}{\operatorname{arg\,min}} \|A - B\|_*,$$

where $\|\cdot\|_*$ is either the induced 2-norm or Frobenius norm of a matrix.

Low-rank approximation

For a matrix $A \in \mathbb{C}^{m \times n}$, a common task is to form a rank-r approximation to A:

 $A \approx B$, $\operatorname{rank}(B) \leq r$.

(Of course this is only interesting if $r < \operatorname{rank}(A)$.)

Theorem ((Schmidt)-Eckart-Young-Mirsky) Let $A \in \mathbb{C}^{m \times n}$ have SVD $A = U\Sigma V^*$. Then

$$\sum_{j=1}^{r} \sigma_j \left(u_j v_j^* \right) = \underset{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leqslant r}}{\operatorname{arg\,min}} \|A - B\|_*,$$

where $\|\cdot\|_*$ is either the induced 2-norm or Frobenius norm of a matrix. This theorem is the basis for innumerable applications in matrix approximation, data compression and summarization, and model acceleration and reduction.