Midterm exam $(2$ weeks from today)

- closed book + notes
- no calculators/ computer simulations
- 50 mine (during class time)
- exam pdf available starting exam time.
- upload (to canvas) within 20 ming after exam time finishes. (pencil +paper problems)
\& - Hearly based on HW problems

The singular value decomposition

MATH 6610 Lecture 09

September 23, 2020

Trefethen \& Bau: Lectures 4, 5

Diagonalizability \rightarrow trustorming a matrix into a L09-S01
Recall: diagonal matey via a similarity transform

- All non-defective square matrices are diagonalizable (eigenvalue decomposition) $A=V \Lambda V^{-1}$
- All square matrices are bidiagonalizable (Jordan normal form) $A \equiv V J V^{-1}$
- All square matrices are unitarily triangularizable (Schur decomposition)
$\left(\begin{array}{l}\text { All normal matrices } \\ A=U T U^{*}\end{array}\right.$

$$
A=U \Lambda U^{*}
$$

Diagonalizability
Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)
- All normal matrices are unitarily diagonalizable (spectral theorem)

What about rectangular matrices?
Ans: All matres are diagonal, upon appropriate unitary transforms of the domain and range.

The singular value decomposition
Theorem (SVD) (Arb, tray m, n)
Any matrix $A \in \mathbb{C}^{m \times n}$ can be written as the product,

$$
A=\underline{U} \Sigma \underline{\underline{V}}
$$

where $\underline{U} \in \mathbb{C}^{m \times m}$ and $\underline{V} \in \mathbb{C}^{n \times n}$ are unitary.
The matrix $\Sigma \in C^{m \times n}$ is diagonal with non-negative entries.

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2} \ldots \sigma_{\min \{m, n\}}\right) \rightarrow\left\{\sigma_{j}\right\} \text { are "sing ular } \underset{\text { values" }}{ }
$$

The singular value decomposition

Theorem (SVD)
Any matrix $A \in \mathbb{C}^{m \times n}$ can be written as the product,

$$
A=U \Sigma V^{*},
$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.
The matrix $\Sigma \in C^{m \times n}$ is diagonal with non-negative entries.

With $p=\min \{m, n\}$, notational convention:

- $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \notin$
- $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{p} \geqslant 0$ (ordering is assumed)
- $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right]$ (columns)
- $V=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ (columns)

Proof: Idea- induction on (m, n)
Base cases: (i) $m \geq 1, n=1$ (A is a column vector)

$$
\left.A=\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right)=\frac{a_{1}}{\left\|a_{1}\right\|} \cdot\left\|a_{1}\right\| \quad \text { if }\left\|a_{1}\right\|>0\right)
$$

Define $U=\left(\begin{array}{ccc}a_{1} & 1 & 1 \\ \frac{a_{1} \|}{\left\|a_{1}\right\|} & u_{2} & u_{m} \\ 1 & 1 & 1\end{array}\right) \begin{aligned} & \text { where } \\ & \left\{u_{j}\right\}_{j=2} \\ & \text { is an }\end{aligned}$ owhonormal completion of \mathbb{C}^{m}.

$$
\begin{gathered}
V=1, \quad \sigma_{1}=\left\|a_{1}\right\| \\
A=\frac{a_{1}}{\left\|a_{1}\right\|} \cdot\left\|a_{1}\right\| \cdot 1=U \sum V^{*}
\end{gathered}
$$

(ii) $m=1, n \geq 1$ (A is a row vector)

Just use SUD for A^{*} (column vector)

$$
\begin{aligned}
& A^{*}=U \Sigma V^{*} \\
& \Rightarrow A=V \Sigma^{*} U^{*} \quad(\text { this is a } \delta V D \text { of } A) .
\end{aligned}
$$

(iii) general $m, n, A=0$.

$$
A=I_{m \times m} O_{m \times n} I_{n \times n}
$$

(U) (I) $\left(U^{*}\right)$

Inductive step: assume $m, n \geq 2$ consider $A^{+} A \in \mathbb{C}^{n \times n}$
$A^{*} A$ is Hermitian semi-postive define. (because $A^{*} A$ is Hermitian and

$$
\left.A^{*} A=V \Lambda V^{*} R_{A^{*} A}(x) \geq 0\right) \max _{j_{11}\left|\lambda_{j}\right|}
$$

choose eigenvalue λ sit. $\rho\left(A^{x} A\right)=\lambda$
Note:
we can assume $\lambda>0$ because otherwise $A=0$

Let v, be an (y) normalized eigenvector for λ.

$$
A^{x} A v_{1}=\lambda v_{1} \quad\left(v_{1} \in \mathbb{C}^{n}\right)
$$

Define $\sigma_{1}=\sqrt{\lambda}>0$.
Define $u_{1}=\frac{A v_{1}}{\sigma_{1}}$
First: note that $\sigma_{1}=\|A\|_{2}(\ngtr)$

$$
\begin{aligned}
R_{A^{*} A}(x) & =\frac{\left.\left\langle A^{*} x_{x},\right\rangle\right\rangle}{\left.\left\langle x_{1},\right\rangle\right\rangle}=\frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}} \\
\Rightarrow\|A\|_{2}^{2} & =\sup _{x \neq 0} R_{A^{*}, x}|x\rangle \\
& =\sup _{\operatorname{rup}_{0} \mid 0} \frac{\left\langle\Lambda V^{*} x, V_{x}^{*}\right\rangle}{\left\langle V_{x}^{*}, V^{*} x\right\rangle} \\
& =\sup _{y \neq 0} \frac{\langle\Delta y, y\rangle}{\langle y, y\rangle}=\lambda=\sigma_{1}^{2}(\phi)
\end{aligned}
$$

Now: "reduce" A :

$$
U_{1}=[\begin{array}{cccc}
1 & 1 & 1 \\
u_{1} & r_{2} & \cdots & r_{m} \\
\underbrace{1}_{\text {any }} & \text { ON completion or } \mathbb{C}^{m}
\end{array} \underbrace{m}
$$

$$
V_{1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
V_{1} & s_{2} & \cdots s_{n} \\
1 & \underbrace{1}_{\text {any }} & \text { ON completion of } \mathbb{C}^{n} \text {. }
\end{array}\right.
$$

U_{1} and V_{1} are unitary.

$$
U_{1}^{*} A V_{1}=U_{1}^{*}\left(\begin{array}{ccc}
1 & 1 & \\
A v_{1} & A S_{2} & - \\
1 & A S_{n} \\
1 & 1 & 1
\end{array}\right)
$$

$j \neq 1:{\underset{y}{j}}_{y_{j}^{*}}^{r_{j}^{x}} A v_{1}=y_{j}^{*} u_{1}^{x}-\sigma_{1}=0$

$$
u_{1}^{*} A v_{1}=u_{1}^{*} u_{1} \cdot \sigma_{1}=\sigma_{1}
$$

Next: $x=0$
Detive $A=U_{1}^{*} A V_{1}$, Let $w=\frac{1}{\sqrt{\sigma_{1}^{2}+\|x\|_{2}^{2}}}\left(\begin{array}{l}\sigma_{1} \\ x^{*} \\ 1\end{array}\right)$

$$
\sigma_{1}=\|A\|_{2}=\left\|A_{1}\right\|_{2} \geq\left\|A_{1} w\right\|_{2}=\sqrt{\frac{\left(\sigma_{1}^{2}+\|x\|_{2}^{2}\right)}{\sqrt{\sigma_{2}\left\|_{1}\right\|_{2}^{2}}}+\cdots}
$$

$$
\begin{aligned}
& \text { det'n of 2-numm } \\
& \Rightarrow \geq \sqrt{\sigma_{1}^{2}+\|x\|_{2}^{2}} \\
& \Rightarrow \sigma_{1} \geq \sqrt{\sigma_{1}^{2}+\|x\|_{2}^{2}} \Rightarrow\|x\|=0 \Rightarrow x=0 \\
& \text { IRe., } A_{1}=\left(\begin{array}{ll}
\sigma_{1}-0 \\
1 & \widetilde{A} \\
0 & \widetilde{A}
\end{array}\right)
\end{aligned}
$$

nar-negaty
contributions.

By inductive hypothesis, IT has an SUD, and we can use this to get sro for A...

The SVD

The SVD is arguably the most powerful matrix decomposition.

The SVD $\min \{m, n\}$

L09-S03 The SVD is arguably the most powerful matrix decomposition.

Define $r:=\operatorname{rank}(A) \leq P$

The SVD: oingullor values are ordered: $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{p} \geq 0$.
The SVD is arguably the most powerful matrix decomposition.

$$
A=U \Sigma V^{*}=\sum_{j=1}^{p} \sigma_{j}\left(u_{j} v_{j}^{*}\right)
$$

If $r=\operatorname{rank}(A)$:

$$
\begin{array}{cc}
\sigma_{j}=0, & j>r . \\
\text { (if not: dim. range }(A)>r) &
\end{array}
$$

The SVD
The SVD is arguably the most powerful matrix decomposition.

$$
A=U \Sigma V^{*}=\sum_{j=1}^{p} \sigma_{j}\left(u_{j} v_{j}^{*}\right)
$$

If $r=\operatorname{rank}(A)$:

$$
\sigma_{j}=0, \quad j>r
$$

A has a reduced SVD:

$$
\begin{aligned}
& A=\sum_{j=1}^{r} \sigma_{j}\left(u_{j} v_{j}^{*}\right)=\widetilde{U} \widetilde{\Sigma} \tilde{V}^{*} \\
& \bar{u}=\| \| \\
& \tilde{\Sigma}_{\uparrow}=(\lambda) \\
& \tilde{V}=\widetilde{(\| \cdot \cdots)} \\
& r \not r r
\end{aligned}
$$

The SVD

The SVD is arguably the most powerful matrix decomposition.

$$
A=U \Sigma V^{*}=\sum_{j=1}^{p} \sigma_{j}\left(u_{j} v_{j}^{*}\right)
$$

If $r=\operatorname{rank}(A)$:

$$
\sigma_{j}=0, \quad j>r
$$

A has a reduced SVD:

$$
\begin{array}{r}
A=\sum_{j=1}^{r} \sigma_{j}\left(u_{j} v_{j}^{*}\right)=\tilde{U} \tilde{\Sigma} \widetilde{V}^{*} \\
\|A\|_{2}=\sigma_{1} \\
\|A\|_{2}=\sup _{\|x\|=1}\|A x\|_{2}=\sup _{\|x\|=1}\left\|U \Sigma V^{*} x\right\|_{2}
\end{array}
$$

$$
\begin{aligned}
& =\sup _{\|x\|=1}\left\|\sum_{y}^{V_{x}^{*}}\right\| \\
& =\sup _{\|y\|=1}\left\|\sum y\right\|_{2} \longrightarrow \text { wedid this } \\
& =\begin{array}{c}
\text { betare }
\end{array} \\
& =\sigma_{1}
\end{aligned}
$$

The SVD

The SVD is arguably the most powerful matrix decomposition.

$$
A=U \Sigma V^{*}=\sum_{j=1}^{p} \sigma_{j}\left(u_{j} v_{j}^{*}\right)
$$

If $r=\operatorname{rank}(A)$:

$$
\sigma_{j}=0, \quad j>r
$$

A has a reduced SVD:

$$
\begin{gathered}
A=\sum_{j=1}^{r} \sigma_{j}\left(u_{j} v_{j}^{*}\right)=\widetilde{U} \widetilde{\Sigma} \widetilde{V}^{*} \\
\|A\|_{2}=\sigma_{1}
\end{gathered}
$$

If A is square and invertible:

$$
\left\|A^{-1}\right\|\|A\|=: \kappa(A)=\frac{\sigma_{1}}{\sigma_{n}}
$$

If A is invertible: $\operatorname{rank}(A)=n=m$ \Downarrow
Σ is invertible

$$
\begin{aligned}
& A^{-1}=\left(U \Sigma V^{*}\right)^{-1}=V \Sigma^{-1} U^{*} \\
& \text { is an SVD of } A^{-1} \\
& \Rightarrow\left\|A^{-1}\right\|_{2}=\max _{j} \frac{1}{\sigma_{j}}=\frac{1}{\sigma_{n}}
\end{aligned}
$$

U, \sum, V^{*} are also matrices related to $A^{*} A$, and
$A^{*} A \rightarrow$ Hermitian postive-definite.

$$
\begin{aligned}
& A^{*} A=V \Omega V^{*} \quad(\nRightarrow) \\
& A=U \Sigma V^{*} \Rightarrow A^{*} A=V \underbrace{\sum_{\text {matrix }}^{*} \sum V^{*}(A)}_{n \times n, \text { diagonal }} \\
& \Sigma^{\gamma} \Sigma=\left(\begin{array}{llll}
\sigma_{1}^{2} & & \\
& \sigma_{2}^{2} & & \\
& & & \sigma_{n}^{2} \\
& & & \\
& & &
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \lambda_{1}\left(A^{*} A\right) & =\sigma_{1}^{2}(A) \quad\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{n}\right) \\
\lambda_{n}\left(A^{*} A\right) & =\sigma_{n}^{2}(A)
\end{aligned}
$$

eigenrectors V of $A^{*} A=$ right-singular vectors V ot A.
(similor dharacterization for $U, A A^{*}$).

