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L09-S01Diagonalizability

Recall:
All non-defective square matrices are diagonalizable (eigenvalue
decomposition)
All square matrices are bidiagonalizable (Jordan normal form)
All square matrices are unitarily triangularizable (Schur decomposition)
All normal matrices are unitarily diagonalizable (spectral theorem)

What about rectangular matrices?
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L09-S02The singular value decomposition

Theorem (SVD)
Any matrix A P Cmˆn can be written as the product,

A “ UΣV ˚,

where U P Cmˆm and V P Cnˆn are unitary.
The matrix Σ P Cmˆn is diagonal with non-negative entries.

With p “ mintm,nu, notational convention:
Σ “ diagpσ1, . . . , σpq

σ1 ě σ2 ě ¨ ¨ ¨ ě σp ě 0

U “ ru1, u2, . . . , ums

V “ rv1, v2, . . . , vns
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L09-S03The SVD
The SVD is arguably the most powerful matrix decomposition.

A “ UΣV ˚ “

p
ÿ

j“1

σj
`

ujv
˚
j

˘

If r “ rankpAq:

σj “ 0, j ą r.

A has a reduced SVD:

A “
r
ÿ

j“1

σj
`

ujv
˚
j

˘

“ rU rΣrV ˚

}A}2 “ σ1

If A is square and invertible:

κpAq “
σ1
σn
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