The spectral theorem

MATH 6610 Lecture 08

September 21, 2020

Trefethen & Bau: Lecture 24

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?

The spectral theorem

Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is a *normal matrix* if it commutes with its transpose.

L08-S02

The spectral theorem

L08-S02

Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is a *normal matrix* if it commutes with its transpose.

Theorem (The spectral theorem)

A square matrix A is unitarily diagonalizable if and only if it is normal.

Normal matrices are the class of matrices for which eigenvalues *precisely* characterize the action of a matrix.

L08-S03

Normal matrices are the class of matrices for which eigenvalues *precisely* characterize the action of a matrix.

If A is normal, \ldots

• then the 2-norm induced operator, spectral radius, and maximum numerical range coincide

Normal matrices are the class of matrices for which eigenvalues *precisely* characterize the action of a matrix.

If A is normal, ...

- then the 2-norm induced operator, spectral radius, and maximum numerical range coincide
- then $\|Ax\|_2 = \|A^*x\|_2$ for any vector x

Normal matrices are the class of matrices for which eigenvalues *precisely* characterize the action of a matrix.

If A is normal, ...

- then the 2-norm induced operator, spectral radius, and maximum numerical range coincide
- then $\|Ax\|_2 = \|A^*x\|_2$ for any vector x
- then $A = A^*U$ for some unitary U

Normal matrices

Normal matrices are the class of matrices for which eigenvalues *precisely* characterize the action of a matrix.

If \boldsymbol{A} is normal, \ldots

- then the 2-norm induced operator, spectral radius, and maximum numerical range coincide
- then $||Ax||_2 = ||A^*x||_2$ for any vector x
- then $A = A^*U$ for some unitary U

Actually, any of the above also implies that A is normal.

Eigenvalue conditioning

L08-S04

Consider $A \in \mathbb{C}^{n \times n}$, along with the map $\lambda : \mathbb{C}^{n \times n} \to \mathbb{C}$ that computes an eigenvalue of A:

 $Av = \lambda(A)v,$ for some $v \neq 0$

What is the conditioning of this operation?

Eigenvalue conditioning

L08-S04

Consider $A \in \mathbb{C}^{n \times n}$, along with the map $\lambda : \mathbb{C}^{n \times n} \to \mathbb{C}$ that computes an eigenvalue of A:

 $Av = \lambda(A)v,$ for some $v \neq 0$

What is the conditioning of this operation?

Theorem (Bauer-Fike)

Assume $A \in C^{n \times n}$ is diagonalizable with eigenvector matrix $V \in \mathbb{C}^{n \times n}$. Then, using the 2-norm, the absolute condition number of computing eigenvalues is $\tilde{\kappa}_{\lambda}(A) = \kappa(V)$.