Numerical stability

MATH 6610 Lecture 07

September 18, 2020

Trefethen & Bau: Lecture 14, 15

Numerical algorithms

Given $f:\mathbb{C}^n\to\mathbb{C}^m$, we wish to understand how roundoff errors affect evaluation of f.

This should depend on

- Loss of accuracy due to finite precision \rightarrow due to floating soint Conditioning of $f \rightarrow$ sensitivity of f.

Numerical algorithms

Given $f:\mathbb{C}^n\to\mathbb{C}^m$, we wish to understand how roundoff errors affect evaluation of f.

This should depend on

- Loss of accuracy due to finite precision
- Conditioning of f

Let $\widetilde{f}: \mathbb{C}^n \to \mathbb{C}^m$ denote the actual algorithmic implementation of f.

We might hope that
$$\frac{\|f(x) - \widetilde{f}(x)\|}{\|f(x)\|} = \mathcal{O}(\epsilon_{\mathrm{mach}}), \quad \forall i.e. \ \text{env} \ \text{denote the actual algorithmic implementation of } f.$$
 but this is typically too much to ask for if f is ill-conditioned. Funding.

factor at
$$K_f(x)$$
 (relative cond. number of f)

Forward stability

We can, however, analyze the error in the algorithm \widetilde{f} .

Forward stability

We can, however, analyze the error in the algorithm \widetilde{f} . The start below of χ $\frac{\|\widetilde{f}(x) - f(x)\|}{\|f(x)\|} \leq \frac{\|\widetilde{f}(x) - f(\widetilde{x})\|}{\|f(x)\|} + \frac{\|f(\widetilde{x}) - f(x)\|}{\|f(x)\|}, \qquad \frac{\|\chi - \chi\|}{\|\chi\|} = \varepsilon_{\text{mach}}$

and this motivates a definition.

motivates a definition.

Necall:
$$\frac{\|f(x) - f(x)\|}{\|f(x)\|} \le \chi_{f}(x) \cdot \frac{\|x - x\|}{\|x\|}$$
 (defin of χ_{f}).

 $\leq \chi_{f}(x) \cdot \varepsilon_{mach}$

Strategyi define "Stability" as something that makes first term comparable to 2nd term (in magnitude)

Forward stability

We can, however, analyze the error in the algorithm \widetilde{f} .

$$\frac{\|\widetilde{f}(x) - f(x)\|}{\|f(x)\|} \le \frac{\|\widetilde{f}(x) - f(\widetilde{x})\|}{\|f(x)\|} + \frac{\|f(\widetilde{x}) - f(x)\|}{\|f(x)\|},$$

and this motivates a definition.

Definition

An algorithm \widetilde{f} is forward stable if, for every $x \in \mathbb{C}^n$, we have

$$\frac{\|\widetilde{f}(x)-f(\widetilde{x})\|}{\|f(\widetilde{x})\|}=\mathcal{O}(\epsilon_{\mathrm{mach}}),$$
 for some \widetilde{x} satisfying $\|x-\widetilde{x}\|=\|x\|\mathcal{O}(\epsilon_{\mathrm{mach}}).$

A forward stable algorithm gives an "approximately correct answer to a closely related question."

If \(\text{is forward stable} \)

\[
\begin{align*}
\text{If \(\text{LX} \) - \(\text{ExX} \) \end{align*} \leq \(\text{K_E(X)} \) \(\text{OCE_mach} \)

\[
\begin{align*}
\text{If \(\text{LX} \) \end{align*} \leq \text{Mach} \\
\text{If \(\text{LX} \) \end{align*} \text{Appendix} \\
\text{If \(\text{LX} \) \end{align*} \\
\text{If \(\text{LX} \) \end{align*} \text{Appendix} \\
\text{If \(\text{LX} \) \end{align*} \\
\text{If \(\text{

Forward stability, II

$$\frac{\|\widetilde{f}(x) - f(\widetilde{x})\|}{\|f(\widetilde{x})\|} = \mathcal{O}(\epsilon_{\text{mach}}),\tag{1}$$

for some \widetilde{x} satisfying $||x - \widetilde{x}|| = ||x|| \mathcal{O}(\epsilon_{\text{mach}})$.

If \widetilde{f} is forward stable, we can show that \widetilde{f} produces a reasonable approximation to f.

Forward stability, II

$$\frac{\|\widetilde{f}(x) - f(\widetilde{x})\|}{\|f(\widetilde{x})\|} = \mathcal{O}(\epsilon_{\text{mach}}), \tag{1}$$

for some \widetilde{x} satisfying $||x - \widetilde{x}|| = ||x|| \mathcal{O}(\epsilon_{\text{mach}})$.

If \widetilde{f} is forward stable, we can show that \widetilde{f} produces a reasonable approximation to f.

This error estimation procedure, requiring the establishment of (1), is *forward* error analysis.

Showing forward stability (1) is frequently technical and difficult.

Backward stability

A dual, but somewhat stranger+stronger notion of stability is backward stability.

Definition

An algorithm \widetilde{f} is backward stable if, for every $x \in \mathbb{C}^n$, we have

$$\widetilde{f}(x) = \underline{f(\widetilde{x})},$$
 (2)

for some \widetilde{x} satisfying $||x - \widetilde{x}|| = ||x|| \mathcal{O}(\epsilon_{\text{mach}})$.

A backward stable algorithm gives an "exact answer to a closely related question."

1.) If f is backward stable
$$\Rightarrow \frac{|f(x)-f(x)||}{|f(x)-f(x)||} = 0$$

2.) Backward stability

from in triangle inequality.

Backward stability

A dual, but somewhat stranger+stronger notion of stability is backward stability.

Definition

An algorithm \widetilde{f} is backward stable if, for every $x \in \mathbb{C}^n$, we have

$$\widetilde{f}(x) = f(\widetilde{x}),$$
 (2)

for some \widetilde{x} satisfying $||x - \widetilde{x}|| = ||x|| \mathcal{O}(\epsilon_{\text{mach}})$.

A backward stable algorithm gives an "exact answer to a closely related question."

If \widetilde{f} is backward stable, then showing accuracy of the algorithm \widetilde{f} is easier.

Estimating error by establishing (2) is backward error analysis.

Backward stability is frequently easier to show than forward stability.

are actually true in IEEE 754.

Assume some floating-point axioms:

- 71. For each $x \in \mathbb{R}$, then $fl(x) = x(1+\epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\text{mach}})$.
- 2. For floating-points numbers $x,y\in\mathbb{R}$, then $x\odot y=\underbrace{(x\cdot y)(1+\epsilon)}$ for $|\epsilon|\leqslant\mathcal{O}(\epsilon_{\mathrm{mach}}).$ $(\cdot=+,-,\times)$

rounding erm

$$x \mapsto fl(x) \Rightarrow floating point representation of x.$$

 $\rightarrow \oplus, \Theta, \Theta \Rightarrow floating-point implementations of +,-, x.$

Assume some floating-point axioms:

- 1. For each $x \in \mathbb{R}$, then $fl(x) = x(1+\epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\text{mach}})$.
- 2. For floating-points numbers $x, y \in \mathbb{R}$, then $\underline{x \odot y = (x \cdot y)(1 + \epsilon)}$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\mathrm{mach}})$. $(\cdot = +, -, \times)$

Example

Given
$$x,y\in\mathbb{R}$$
, is the implementation $\widetilde{f}(x,y)\coloneqq\underbrace{fl(x)}\ominus\underbrace{fl(y)}$ of $f(x,y)=x-y$ backward stable? (Yes)

(tying to show
$$\widehat{f}(x,y) = f(\widehat{x},\widehat{y})$$
)

$$f(x,y) = f(x) \oplus f(y) = \chi(1+e_1) \oplus \chi(1+e_2)$$

$$= [x(1+\epsilon_1) - y(1+\epsilon_2)](1+\epsilon_3), \quad \epsilon_3 = O(\epsilon_{mach}).$$

$$= x(1+\epsilon_1)(1+\epsilon_3) - y(1+\epsilon_2)(1+\epsilon_3)$$

$$= x(1+\epsilon_1)(1+\epsilon_3) - y(1+\epsilon_2)(1+\epsilon_3)$$

$$= x(1+\epsilon_1)(1+\epsilon_3) - y(1+\epsilon_2)(1+\epsilon_3)$$

$$= x(1+\epsilon_1)(1+\epsilon_3) - y(1+\epsilon_2)(1+\epsilon_3)$$

$$= x(1+\epsilon_1)(1+\epsilon_2) - y(1+\epsilon_2)(1+\epsilon_3)$$

$$= x(1+\epsilon_1)(1+\epsilon_2) - y(1+\epsilon_2)(1+\epsilon_3)$$

$$= \chi(|+\epsilon_{\mathbf{u}}) - y(|+\epsilon_{\mathbf{s}}) = f(\widehat{x}, \widehat{y})$$

$$= \widetilde{\chi}$$

$$\widetilde{y}$$

Note: f is not well-conditioned.

$$f(x,y) = \chi - y \implies ||J||_2 = J2$$

$$K_f(x,y) = \frac{||J||_2 ||(x,y)||_2}{||f(x,y)||_2} = \frac{J2 \int \chi^2 + y^2}{||x-y||}$$

can be big if |x-y|

Assume some floating-point axioms:

- 1. For each $x \in \mathbb{R}$, then $fl(x) = x(1+\epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\text{mach}})$.
- 2. For floating-points numbers $x, y \in \mathbb{R}$, then $x \odot y = (x \cdot y)(1 + \epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\mathrm{mach}})$. $(\cdot = +, -, \times)$

Example

Given $x, y \in \mathbb{R}$, is the implementation $\widetilde{f}(x,y) \coloneqq fl(x) \ominus fl(y)$ of f(x,y) = x-y backward stable?

Example

Given $x \in \mathbb{R}$, is the implementation $\widetilde{f}(x) := 1 \oplus fl(x)$ of f(x) = 1 + x backward stable? ($\begin{subarray}{c} \begin{subarray}{c} \beg$

Assume some floating-point axioms:

- 1. For each $x \in \mathbb{R}$, then $fl(x) = x(1+\epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\text{mach}})$.
- 2. For floating-points numbers $x, y \in \mathbb{R}$, then $x \odot y = (x \cdot y)(1 + \epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\mathrm{mach}})$. $(\cdot = +, -, \times)$

Example

Given $x, y \in \mathbb{R}$, is the implementation $\widetilde{f}(x,y) \coloneqq fl(x) \ominus fl(y)$ of f(x,y) = x-y backward stable?

Example

Given $x \in \mathbb{R}$, is the implementation $\widetilde{f}(x) := 1 \oplus fl(x)$ of f(x) = 1 + x backward stable?

Example

Given $x,y\in\mathbb{R}^n$, the floating-point implementation of $f(x,y)=y^Tx$ is backward stable.

Assume some floating-point axioms:

- 1. For each $x \in \mathbb{R}$, then $fl(x) = x(1+\epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\text{mach}})$.
- 2. For floating-points numbers $x, y \in \mathbb{R}$, then $x \odot y = (x \cdot y)(1 + \epsilon)$ for $|\epsilon| \leq \mathcal{O}(\epsilon_{\mathrm{mach}})$. $(\cdot = +, -, \times)$

Example

Given $x, y \in \mathbb{R}$, is the implementation $\widetilde{f}(x,y) \coloneqq fl(x) \ominus fl(y)$ of f(x,y) = x-y backward stable?

Example

Given $x \in \mathbb{R}$, is the implementation $\widetilde{f}(x) := 1 \oplus fl(x)$ of f(x) = 1 + x backward stable?

Example

Given $x, y \in \mathbb{R}^n$, the floating-point implementation of $f(x, y) = y^T x$ is backward stable.

Example

The floating-point implementation of $f(x,y) = xy^T$ is not backward stable.

Issue: I for outer products can produce answers that are of rank greater than 1.