Conditioning of problems

MATH 6610 Lecture 06

September 16, 2020

Trefethen \& Bau: Lecture 12

Solution sensitivity
End goal (later): understand sensitivity of numerical algorithms to roundoff errors. ("stability")

First task (today): understand sensitivity of solutions of mathematical problems. ("conditioning")
a property only of
the mathematical problem,
nos of forte precision.

Solution sensitivity
End goal (later): understand sensitivity of numerical algorithms to roundoff errors. ("stability")

First task (today): understand sensitivity of solutions of mathematical problems. ("conditioning")
Example
Let $f(x)=a x$ for scalars $a, x, \quad f: \mathbb{C} \rightarrow \mathbb{C}$
The sensitivity of the map $x \mapsto f(x)$ depends on the value of a.

$$
\begin{aligned}
& f(x+\varepsilon)=a x+a \varepsilon \\
&=f(x)+a \varepsilon \text { pertarbation in the output } \\
& \text { perturbation } \\
& \text { in input }
\end{aligned}
$$

Vector norms
We'll measure perturbations of functions (generally over \mathbb{C}^{n}), and will measure these perturbations with norms.
Theorem (Equivalence of norms)
Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be norms on a finite dimensional vector space V. Then $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent norms.

In $\mathbb{C}^{n}:\|\cdot\|_{2}$ is fine
we also have $H \cdot \|_{p},(p \geq 1)$
Q: Dues the definition of norm affect notions of conditioning?
A:) (No, effectively)
Norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent if $\exists O<c<C<\infty$
such that $c \cdot\|x\|_{a} \leq\|x\|_{b} \leq C\|x\|_{a} \quad \forall x \in \mathbb{C}^{n}$.

Vector norms

We'll measure perturbations of functions (generally over \mathbb{C}^{n}), and will measure these perturbations with norms.

Theorem (Equivalence of norms)
Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be norms on a finite dimensional vector space V. Then
$\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent norms.
(For this reason, we'll consider a(n unspecified) generic norm $\|\cdot\|$ in what follows.

Absolute sensitivity measures
Let $f: \mathbb{C}^{n} \rightarrow \mathbb{\mathbb { C }}^{m}$.
A sensible measure of sensitivity of f at x is perturbation-based:

$$
\begin{aligned}
& \text { perturbation } \\
& \text { of ardput }
\end{aligned} \frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|} . \delta x \in \mathbb{C}^{n}
$$

Absolute sensitivity measures

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
A sensible measure of sensitivity of f at x is perturbation-based:

$$
\text { all directivs } \quad \frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|} \text {. }
$$

As with derivatives, we can medfure the sensitivity by taking limits:

$$
\hat{\kappa}(x):=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leqslant \delta} \frac{\|\delta f\|}{\|\delta x\|}, \quad \delta f:=\frac{\frac{1}{}(x+\delta x)-f(x)}{} .
$$

$\hat{\kappa}(x)$ is called the absolute condition number of f at x.

$$
\delta f=f(x+8 x)-f(x)
$$

Absolute sensitivity measures

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
A sensible measure of sensitivity of f at x is perturbation-based:

$$
\frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|}
$$

As with derivatives, we can measure the sensitivity by taking limits:

$$
\hat{\kappa}(x):=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leqslant \delta} \frac{\|\delta f\|}{\|\delta x\|}, \quad \delta f:=\frac{\|f(x+\delta x)-f(x)\|}{} .
$$

$\hat{\kappa}(x)$ is called the absolute condition number of f at x.
Note that condition numbers are properties of the map f and not of an algorithmic or finite-precision implementation.

Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.
Thus, absolute condition numbers have limited utility for understanding numerical stability.

Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.
Thus, absolute condition numbers have limited utility for understanding numerical stability.

somatimes just "condition number".

Again, this is a (mathematical) property of f, and not of an algorithmic implementation.

Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.
Thus, absolute condition numbers have limited utility for understanding numerical stability.

The relative condition number of f at x is defined as

$$
\begin{aligned}
\kappa(x) & :=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leqslant \delta} \frac{\frac{\|\delta f\|}{\|f(x)\|}}{\frac{\|\delta x\|}{\|x\|}} \\
& =\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leqslant \delta} \frac{\|\delta f\|\|x\|}{\|\delta x\|\|f(x)\|}
\end{aligned}
$$

Again, this is a (mathematical) property of f, and not of an algorithmic implementation.
(Problems (functions f) with "small" condition numbers are well-conditioned. Problems (functions f) with "large" condition numbers are ill-conditioned.

Examples
Example
If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is smooth, then condition numbers are norms of Jacobeans.

matrix norm induced

$$
\begin{aligned}
J(x) & :=\frac{\partial f}{\partial x}(x) . \\
J(x) & \in \mathbb{C}^{m \times n} \\
(J(x))_{K_{1} \ell} & =\frac{\partial f_{k}}{\partial x_{\ell}}(x)
\end{aligned}
$$

by norms on \mathbb{C}^{n} and \mathbb{C}^{m}.

Examples
Example
If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is smooth, then condition numbers are norms of Jacobeans.

$$
\hat{\kappa}(x)=\|J(x)\|, \quad J(x):=\frac{\partial f}{\partial x}(x)
$$

Example
$f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x)=a x$.
f is smooth: $\hat{k}(x)=\left|f^{\prime}(x)\right|=|a|$

$$
\begin{aligned}
K(x) & =\lim _{\delta \rightarrow 0} \sup _{S_{x} \| \leq \delta} \frac{\|\delta f\| /\|f\|}{\|\delta x\|} \text { doit depend on } \\
& =\hat{k}(x) \cdot \frac{\|x\|}{\|f(x)\|}=|a| \frac{|x|}{|a x|}=1 .
\end{aligned}
$$

Examples

Example

If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is smooth, then condition numbers are norms of Jacobian.

$$
\hat{\kappa}(x)=\|J(x)\|, \quad J(x):=\frac{\partial f}{\partial x}(x)
$$

Example
$f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x)=a x$.
Example
$f: \not \mathbb{X}^{\prime} \rightarrow \mathbb{C}$ defined by $f(x)=x^{p}$ for arbitrary $p>0$. (and $x>0$)
$(0, \infty)$
f is smooth $\Rightarrow \hat{k}(x)=\left|f^{\prime}(x)\right|=p|x|^{p-1}$

$$
k(x)=\hat{k}(x) \cdot \frac{|x|}{\mid f(x))^{3}}=p|x|^{p-1} \cdot \frac{|x|}{|x|^{p}}=p .
$$

Examples

Example

If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is smooth, then condition numbers are norms of Jacobians.

$$
\hat{\kappa}(x)=\|J(x)\|, \quad J(x):=\frac{\partial f}{\partial x}(x)
$$

Example
$f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x)=a x$.
Example
$f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x)=x^{p}$ for arbitrary $p>0$.
Example
$f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by $f(x)=A x$ for invertible $A \in \mathbb{C}^{n \times n}$.

Use 2 -norm on \mathbb{C}^{n}.

$$
\begin{aligned}
& \hat{k}(x)=\|J\|=\|A\|_{2} \\
& k(x)=\hat{k}(x) \cdot \frac{\|x\|}{\|x-x\|}=\|A\| \frac{\|x\|}{\|+x\|}(\neq 1)
\end{aligned}
$$

what is the most sensitive this map can be aral x ?

$$
\sup _{x \rightarrow 0} k(x)=\|A\| \cdot \sup _{x \neq 0} \frac{\|x\|}{\|A x\|}=\|A\| s u p \frac{\left\|A^{-1} y\right\|}{\|y\| x}=\|A\|_{2}\left\|A^{-1}\right\|_{2}
$$

Linear problems

The (relative) condition number of the linear map $x \mapsto A x$, for invertible A, is bounded by

$$
\sup _{x \in \mathbb{C}^{n} \backslash\{0\}} \kappa(x)=\|A\|\left\|A^{-1}\right\| .
$$

Linear problems

The (relative) condition number of the linear map $x \mapsto A x$, for invertible A, is bounded by

$$
\sup _{x \in \mathbb{C}^{n}} \kappa(x)=\|A\|\left\|A^{-1}\right\|
$$

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

$$
A x=b, \quad\left(\text { consider neap } \quad b \mapsto A^{-1} b\right)
$$

is (bounded by) $\|A\|\left\|A^{-1}\right\|$.

Linear problems

The (relative) condition number of the linear map $x \mapsto A x$, for invertible A, is bounded by

$$
\sup _{x \in \mathbb{C}^{n}} \kappa(x)=\|A\|\left\|A^{-1}\right\| .
$$

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

$$
A x=b,
$$

is (bounded by) $\|A\|\left\|A^{-1}\right\|$.
More generally, given invertible A, the (matrix) condition number of A is defined as

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\| .
$$

