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L06-S01Solution sensitivity

End goal (later): understand sensitivity of numerical algorithms to roundoff

errors. (“stability”)

First task (today): understand sensitivity of solutions of mathematical
problems. (“conditioning”)

Example
Let fpxq “ ax for scalars a, x.

The sensitivity of the map x fiÑ fpxq depends on the value of a.
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L06-S02Vector norms
We’ll measure perturbations of functions (generally over

n
), and will

measure these perturbations with norms.

Theorem (Equivalence of norms)
Let } ¨ }a and } ¨ }b be norms on a finite dimensional vector space V . Then
} ¨ }a and } ¨ }b are equivalent norms.

For this reason, we’ll consider a(n unspecified) generic norm } ¨ } in what

follows.
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L06-S03Absolute sensitivity measures

Let f : n Ñ m
.

A sensible measure of sensitivity of f at x is perturbation-based:

}fpx ` �xq ´ fpxq}
}�x} .

As with derivatives, we can measure the sensitivity by taking limits:

̂pxq :“ lim
�Ñ0

sup
}�x}§�

}�f}
}�x} , �f :“ }fpx ` �xq ´ fpxq}

}�x} .

̂pxq is called the absolute condition number of f at x.

Note that condition numbers are properties of the map f and not of an

algorithmic or finite-precision implementation.
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L06-S04Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding

numerical stability.

The relative condition number of f at x is defined as

pxq :“ lim
�Ñ0

sup
}�x}§�

}�f}
}fpxq}

}�x}
}x}

“ lim
�Ñ0

sup
}�x}§�

}�f} }x}
}�x} }fpxq}

Again, this is a (mathematical) property of f , and not of an algorithmic

implementation.

Problems (functions f) with “small” condition numbers are well-conditioned.

Problems (functions f) with “large” condition numbers are ill-conditioned.
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L06-S05Examples

Example
If f : n Ñ m

is smooth, then condition numbers are norms of Jacobians.

̂pxq “ }Jpxq}, Jpxq :“ Bf
Bx pxq.

Example
f : Ñ defined by fpxq “ ax.

Example
f : Ñ defined by fpxq “ xp

for arbitrary p ° 0.

Example
f : n Ñ n

defined by fpxq “ Ax for invertible A P nˆn
.
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L06-S06Linear problems

The (relative) condition number of the linear map x fiÑ Ax, for invertible A,

is bounded by

sup
xP n

pxq “ }A}}A´1}.

By a similar argument, given A and b, the condition number of the problem

that finds the solution x to

Ax “ b,

is (bounded by) }A}}A´1}.

More generally, given invertible A, the (matrix) condition number of A is

defined as

pAq “ }A}}A´1}.
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