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Conditioning of problems
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Solution sensitivity L06-501

End goal (later): understand sensitivity of numerical algorithms to roundoff
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errors. (“stability”)
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First task (today): understand sensitivity of solutions of mathematical
problems. (“conditioning’)
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Solution sensitivity L06-501

End goal (later): understand sensitivity of numerical algorithms to roundoff
errors. (“stability”)

First task (today): understand sensitivity of solutions of mathematical
problems. (“conditioning’)
Example
. C—>
Let f(z) = ax for scalars a,z. , >0
The sensitivity of the map = — f(x) depends on the value of a.
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Vector norms L06-S02

We'll measure perturbations of functions (generally over C™), and will
measure these perturbations with norms.

Theorem (Equivalence of norms)

Let | - |« and | - |» be norms on a finite dimensional vector space V. Then
|- |a and | - ||» are equivalent norms.
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Vector norms L06-502

We'll measure perturbations of functions (generally over C™), and will
measure these perturbations with norms.

Theorem (Equivalence of norms)

Let |- |a and | - |» be norms on a finite dimensional vector space V. Then
|- |a and | - ||» are equivalent norms.

For this reason, we'll consider a(n unspecified) generic norm | - || in what
follows.
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Absolute sensitivity measures L06-503

Let f: C" — C™.

A sensible measure of sensitivity of f at x is perturbation-based:

2 f(x + 6x)
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Absolute sensitivity measures L06-503

Let f:C" - C™.
A sensible measure of sensitivity of f at x is perturbation-based:

\f( + d2) — (x|
al sk I —

(¢
As with derivatives, \we can me//ure the sensitivity by taking limits:

, 1o f]l 1f(a:+(5a:)—f(a:)‘
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k(x) is called the absolute condition number of
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Absolute sensitivity measures L06-503

Let f:C" - C™.
A sensible measure of sensitivity of f at x is perturbation-based:

|f(z + 0x) — f(z)]
[0 |

As with derivatives, we can measure the sensitivity by taking limits:

, 1o f]l ’f(a:—kéac)—f(a:)ﬂ
= lim — Of = .
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k(x) is called the absolute condition number of f at x.

A

* Note that condition numbers are properties of the map f and not of an
algorithmic or finite-precision implementation.
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Relative sensitivity measures L06-504

Recall: floating-point arithmetic makes relative errors, not absolute ones.
ﬂ
e ——

Thus, absolute condition numbers have limited utility for understanding
numerical stability.
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Relative sensitivity measures L06-504

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding
_ i ) [ p v
numerical stability. ) g U\l“' (C()M‘L‘H‘M /W(Mbﬁ‘ |
The relative condition number of f at z is defined as /@[gﬂkﬁ Clrol /n /am/,l
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Again, this is a (mathematical) property of f, and not of an algorithmic
implementation.
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Relative sensitivity measures L06-504

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding
numerical stability.

The relative condition number of f at x is defined as

ché(f!'
k(x) == lim sup -
00 |52) <6 %
J
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Again, this is a (mathematical) property of f, and not of an algorithmic
implementation.

Problems (functions f) with ‘small” condition numbers are well:conditioned.
Problems (functions f) with “large” condition numbers are ill-conditioned.
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L06-505

Examples
Example
If f:C™ — C™ is smooth, then condition numbers are norms of Jacobians.
I) = L (a
I eC *’; ﬁ
= K
wafry orw Miwc/ w )“ % x

by neeme a0 €" and "

MATH 6610-001 — U. Utah Conditionin



L06-505

Examples

Example

If f:C™ — C™ is smooth, then condition numbers are norms of Jacobians.
() = |7(2), I)= L)

Example

f: € — C defined by f(x) = ax.
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L06-505

Examples

Example

If f:C™ — C™ is smooth, then condition numbers are norms of Jacobians.
() = |7(2), I)= L)

Example

f: € — C defined by f(x) = ax.

Example
f Q/—> C defined by f(x) = «P for arbitrary p > 0. [JMJ X 70)
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Examples

Example

If f:C™ — C™ is smooth, then condition numbers are norms of Jacobians.
() = |7(2), 7@) = L@,

Example

f: € — C defined by f(x) = ax.

Example
f: C — C defined by f(x) = P for arbitrary p > 0.

Example
f:C™ — C" defined by f(x) = Ax for invertible A e C™*™.
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Linear problems L06-506

The (relative) condition number of the linear map = — Az, for invertible A,
is bounded by

sup r(z) = |A[]ATH].
xe@*\So)
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Linear problems L06-506

The (relative) condition number of the linear map = — Az, for invertible A,
is bounded by

sup r(z) = [AJ|A7].

xeCn

By a similar argument, given A and b, the condition number of the problem
that finds the solution z to

ar=b  (conster redp b>4")

is (bounded by) |A|[|A~1].
-0
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Linear problems L06-506

The (relative) condition number of the linear map = — Az, for invertible A,
is bounded by

sup r(z) = [AJ|A7].

xeCn

By a similar argument, given A and b, the condition number of the problem
that finds the solution z to

Ax = b,
is (bounded by) |A|[|A~1].

More generally, given invertible A, the (matrix) condition number of A is
defined as

r(A) = |A|A7Y.
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