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L06-S01Solution sensitivity

End goal (later): understand sensitivity of numerical algorithms to roundoff
errors. (“stability”)

First task (today): understand sensitivity of solutions of mathematical
problems. (“conditioning”)

Example
Let fpxq “ ax for scalars a, x.
The sensitivity of the map x ÞÑ fpxq depends on the value of a.
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L06-S02Vector norms
We’ll measure perturbations of functions (generally over Cn), and will
measure these perturbations with norms.

Theorem (Equivalence of norms)
Let } ¨ }a and } ¨ }b be norms on a finite dimensional vector space V . Then
} ¨ }a and } ¨ }b are equivalent norms.

For this reason, we’ll consider a(n unspecified) generic norm } ¨ } in what
follows.
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L06-S03Absolute sensitivity measures

Let f : Cn Ñ Cm.

A sensible measure of sensitivity of f at x is perturbation-based:

}fpx` δxq ´ fpxq}

}δx}
.

As with derivatives, we can measure the sensitivity by taking limits:

κ̂pxq :“ lim
δÑ0

sup
}δx}ďδ

}δf}

}δx}
, δf :“

}fpx` δxq ´ fpxq}

}δx}
.

κ̂pxq is called the absolute condition number of f at x.

Note that condition numbers are properties of the map f and not of an
algorithmic or finite-precision implementation.
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L06-S04Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding
numerical stability.

The relative condition number of f at x is defined as

κpxq :“ lim
δÑ0

sup
}δx}ďδ

}δf}
}fpxq}

}δx}
}x}

“ lim
δÑ0

sup
}δx}ďδ

}δf} }x}

}δx} }fpxq}

Again, this is a (mathematical) property of f , and not of an algorithmic
implementation.

Problems (functions f) with “small” condition numbers are well-conditioned.
Problems (functions f) with “large” condition numbers are ill-conditioned.
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L06-S05Examples

Example
If f : Cn Ñ Cm is smooth, then condition numbers are norms of Jacobians.

κ̂pxq “ }Jpxq}, Jpxq :“
Bf

Bx
pxq.

Example
f : CÑ C defined by fpxq “ ax.

Example
f : CÑ C defined by fpxq “ xp for arbitrary p ą 0.

Example
f : Cn Ñ Cn defined by fpxq “ Ax for invertible A P Cnˆn.
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L06-S06Linear problems

The (relative) condition number of the linear map x ÞÑ Ax, for invertible A,
is bounded by

sup
xPCn

κpxq “ }A}}A´1}.

By a similar argument, given A and b, the condition number of the problem
that finds the solution x to

Ax “ b,

is (bounded by) }A}}A´1}.

More generally, given invertible A, the (matrix) condition number of A is
defined as

κpAq “ }A}}A´1}.
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