Conditioning of problems

MATH 6610 Lecture 06

September 16, 2020

Trefethen & Bau: Lecture 12

Solution sensitivity

End goal (later): understand sensitivity of numerical algorithms to roundoff errors. ("stability")

First task (today): understand sensitivity of solutions of *mathematical* problems. ("conditioning")

Solution sensitivity

End goal (later): understand sensitivity of numerical algorithms to roundoff errors. ("stability")

First task (today): understand sensitivity of solutions of *mathematical* problems. ("conditioning")

Example

Let f(x) = ax for scalars a, x.

The sensitivity of the map $x \mapsto f(x)$ depends on the value of a.

Vector norms

We'll measure perturbations of functions (generally over \mathbb{C}^n), and will measure these perturbations with norms.

Theorem (Equivalence of norms)

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on a finite dimensional vector space V. Then $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent norms.

Vector norms

We'll measure perturbations of functions (generally over \mathbb{C}^n), and will measure these perturbations with norms.

Theorem (Equivalence of norms)

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on a finite dimensional vector space V. Then $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent norms.

For this reason, we'll consider a(n unspecified) generic norm $\|\cdot\|$ in what follows.

Absolute sensitivity measures

Let $f: \mathbb{C}^n \to \mathbb{C}^m$.

A sensible measure of sensitivity of f at x is perturbation-based:

$$\frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|}.$$

Absolute sensitivity measures

Let $f: \mathbb{C}^n \to \mathbb{C}^m$.

A sensible measure of sensitivity of f at x is perturbation-based:

$$\frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|}.$$

As with derivatives, we can measure the sensitivity by taking limits:

$$\hat{\kappa}(x) := \lim_{\delta \to 0} \sup_{\|\delta x\| \leqslant \delta} \frac{\|\delta f\|}{\|\delta x\|}, \qquad \delta f := \frac{\|f(x + \delta x) - f(x)\|}{\|\delta x\|}.$$

 $\hat{\kappa}(x)$ is called the <u>absolute condition number</u> of f at x.

Absolute sensitivity measures

Let $f: \mathbb{C}^n \to \mathbb{C}^m$.

A sensible measure of sensitivity of f at x is perturbation-based:

$$\frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|}.$$

As with derivatives, we can measure the sensitivity by taking limits:

$$\hat{\kappa}(x) := \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \frac{\|\delta f\|}{\|\delta x\|}, \qquad \delta f := \frac{\|f(x + \delta x) - f(x)\|}{\|\delta x\|}.$$

 $\hat{\kappa}(x)$ is called the absolute condition number of f at x.

Note that condition numbers are properties of the map f and \it{not} of an algorithmic or finite-precision implementation.

Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding numerical stability.

Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding numerical stability.

The <u>relative condition number</u> of f at x is defined as

$$\kappa(x) \coloneqq \lim_{\delta \to 0} \sup_{\|\delta x\| \leqslant \delta} \frac{\frac{\|\delta f\|}{\|f(x)\|}}{\frac{\|\delta x\|}{\|x\|}}$$
$$= \lim_{\delta \to 0} \sup_{\|\delta x\| \leqslant \delta} \frac{\|\delta f\| \|x\|}{\|\delta x\| \|f(x)\|}$$

Again, this is a (mathematical) property of f, and not of an algorithmic implementation.

Relative sensitivity measures

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding numerical stability.

The <u>relative condition number</u> of f at x is defined as

$$\kappa(x) \coloneqq \lim_{\delta \to 0} \sup_{\|\delta x\| \leqslant \delta} \frac{\frac{\|\delta f\|}{\|f(x)\|}}{\frac{\|\delta x\|}{\|x\|}}$$
$$= \lim_{\delta \to 0} \sup_{\|\delta x\| \leqslant \delta} \frac{\|\delta f\| \|x\|}{\|\delta x\| \|f(x)\|}$$

Again, this is a (mathematical) property of f, and not of an algorithmic implementation.

Problems (functions f) with "small" condition numbers are well-conditioned. Problems (functions f) with "large" condition numbers are ill-conditioned.

Example

If $f: \mathbb{C}^n \to \mathbb{C}^m$ is smooth, then condition numbers are norms of Jacobians.

$$\hat{\kappa}(x) = \|J(x)\|, \qquad \qquad J(x) \coloneqq \frac{\partial f}{\partial x}(x).$$

Example

If $f:\mathbb{C}^n \to \mathbb{C}^m$ is smooth, then condition numbers are norms of Jacobians.

$$\hat{\kappa}(x) = ||J(x)||,$$
 $J(x) := \frac{\partial f}{\partial x}(x).$

Example

 $f: \mathbb{C} \to \mathbb{C}$ defined by f(x) = ax.

Example

If $f:\mathbb{C}^n \to \mathbb{C}^m$ is smooth, then condition numbers are norms of Jacobians.

$$\hat{\kappa}(x) = ||J(x)||,$$
 $J(x) := \frac{\partial f}{\partial x}(x).$

Example

 $f: \mathbb{C} \to \mathbb{C}$ defined by f(x) = ax.

Example

 $f:\mathbb{C}\to\mathbb{C}$ defined by $f(x)=x^p$ for arbitrary p>0.

Example

If $f:\mathbb{C}^n \to \mathbb{C}^m$ is smooth, then condition numbers are norms of Jacobians.

$$\hat{\kappa}(x) = ||J(x)||,$$
 $J(x) := \frac{\partial f}{\partial x}(x).$

Example

 $f: \mathbb{C} \to \mathbb{C}$ defined by f(x) = ax.

Example

 $f:\mathbb{C}\to\mathbb{C}$ defined by $f(x)=x^p$ for arbitrary p>0.

Example

 $f: \mathbb{C}^n \to \mathbb{C}^n$ defined by f(x) = Ax for invertible $A \in \mathbb{C}^{n \times n}$.

Linear problems

The (relative) condition number of the linear map $x\mapsto Ax$, for invertible A, is bounded by

$$\sup_{x \in \mathbb{C}^n} \kappa(x) = ||A|| ||A^{-1}||.$$

Linear problems

The (relative) condition number of the linear map $x \mapsto Ax$, for invertible A, is bounded by

$$\sup_{x \in \mathbb{C}^n} \kappa(x) = ||A|| ||A^{-1}||.$$

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

$$Ax = b$$

is (bounded by) $||A|| ||A^{-1}||$.

Linear problems

The (relative) condition number of the linear map $x \mapsto Ax$, for invertible A, is bounded by

$$\sup_{x \in \mathbb{C}^n} \kappa(x) = ||A|| ||A^{-1}||.$$

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

$$Ax = b$$

is (bounded by) $||A|| ||A^{-1}||$.

More generally, given invertible A, the (matrix) <u>condition number</u> of A is defined as

$$\kappa(A) = ||A|| ||A^{-1}||.$$