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L05-S01Finite representation of numbers

Numbers in decimal are represented as

34.1503,

This actually means the more complicated expression

3ˆ 101 ` 4ˆ 100 ` 1ˆ 10´1
` 5ˆ 10´2

` 0ˆ 10´3
` 3ˆ 10´4

The portion 34 is the “integer” part, and 1503 is the “fractional” part.

They are separated by the radix (point).

The base 10 is to be understood (implied) by context.

Without context, the base b can be other positive integers:

b “ 6 ñ 3ˆ 61 ` 4ˆ 60 ` 1ˆ 6´1
` 5ˆ 6´2

` 0ˆ 6´3
` 3ˆ 6´4
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L05-S02Computer representations

Circuits typically detect the presence (1) or absence (0) of an electrical signal.

For this reason, base b “ 2 is the standard computer format, e.g.,:

100010.0010011001111

is approximately equal to the decimal 34.1503.

Computers store this binary representation of these numbers, and each digit
is a “bit”.

8 bits = 1 “byte”

Binary representations must store the integer part, the fractional part, and
typically also a sign.
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L05-S03Fixed point vs floating point

Fixed-point representations have a fixed radix point, with the size of the
fractional part predetermined:

100010. 0010011001111
l jh n

fixed number of entries

Then the fractional precision of this representation is fixed for any number.

This truncation of finite representations is one of the main challenges to
address in numerical computations.

Fixed-point representation has a restriced range of precision (pre)defined by
the size of the fractional part.

Floating-point representations allow the radix to float:

1. 000100010011001111
l jh n

fixed number of entries

` exponent

The exponent encodes which exponent the radix is aligned with. (Above: 5)
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L05-S04Floating-point representations

Generally speaking, floating-point representations store:

significand` exponent` sign

The significand combines the integer and fractional parts of the number.

The exponent encodes the location of the radix.

Floating-point representations allows for a (much) larger operating range
than fixed-point representations.

The most popular representation is the IEEE 754 standard, defining various
formats:

Binary 16
Binary 32 (“single precision”)
Binary 64 (“double precision”)
...

Most high-level scientific computing languages use double precision as
default.
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L05-S05Floating-point details

These standards define bit allocation:

Source: https://en.wikipedia.org/wiki/File:Float_example.svg

The number of
bits allocated to the exponent indicates the rounding precision of the format.

Machine precision or machine epsilon is the maximum relative rounding error
due to finite representation,

ˇ

ˇ

ˇ

ˇ

x´ flpxq

x

ˇ

ˇ

ˇ

ˇ

.

Roughly speaking, machine epsilon is also the largest ε such that 1` ε is
rounded to 1.

The roundoff or truncation error associated with a floating-point format is
essentially equal to base´#pexponent digitsq.
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L05-S06Machine precision

Floating-point representation ensures that there is not really an absolute error
committed by computer representations, there is only a relative error.

Source: https://en.wikipedia.org/wiki/File:IEEE754.svg
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L05-S07Roundoff and computing

The rounding truncation imparted by finite representations requires attention
to how algorithms are implemented. E.g.,

Implementation of the formula
?

1` x4 ´ 1 for small positive x.

Evaluation of ex for x ă 0.

Evaluation of fpx`hq´fpxq
h for small h.
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