Variational characterizations of eigenvalues

MATH 6610 Lecture 04

September 9, 2020

Hermitian matrices
If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, recall that:

- \boldsymbol{A} is unitarily diagonalizable, $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}$
- The spectrum of \boldsymbol{A} is real-valued
- (Hermitian) Positive-definite matrices have matrix square roots
(and unique sped square roots)

Hermitian matrices

If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, recall that:

- \boldsymbol{A} is unitarily diagonalizable, $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}$
- The spectrum of \boldsymbol{A} is real-valued
- (Hermitian) Positive-definite matrices have matrix square roots

Today: Variational characterizations of eigenvalues for Hermitian matrices.

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
\begin{gathered}
R_{A}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} x, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}=\frac{\chi^{*} A x}{\chi^{*} X} \\
R_{A}(x)=R_{A}\left(\frac{\chi}{\|x\|_{2}}\right) \quad \begin{array}{l}
\text { (i.e. } \left.R_{A} \mid x\right) \text { is invariant } \\
\text { under scaling of } x)
\end{array}
\end{gathered}
$$

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right)
$$

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

- The numerical range contains the spectrum of \boldsymbol{A}.

$$
\begin{aligned}
& \text { Let } v \text { be an }(y) \text { eigenvector of } A \text { associated to } \\
& \text { eigenvalue } \lambda \text {. Then } R_{A}(v)=\frac{v^{8} A v}{\|v\|_{2}^{2}}=\lambda \frac{v^{z} v}{\|v\|_{2}^{2}}=\lambda
\end{aligned}
$$

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

- The numerical range contains the spectrum of \boldsymbol{A}.
- If \boldsymbol{A} is Hermitian, then $\lambda_{\min }(\boldsymbol{A}) \leqslant R_{\boldsymbol{A}}(\boldsymbol{x}) \leqslant \lambda_{\max }(\boldsymbol{A})$.

Let $y=U_{x}^{*}$

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& y=U^{*} x \\
& \text { Then: } R_{A}(x)=\frac{\left\langle y, \Lambda_{y}\right\rangle}{\|y\|_{2}^{2}}=\frac{\sum_{j=1}^{n} \lambda_{j}\left|y_{j}\right|^{2}}{\|y\|_{2}^{2}} \leq \frac{\sum_{j=1}^{n} \lambda_{n}\left|y_{j}\right|^{2}}{\left\|_{y}\right\|_{2}^{2}} \\
&=\lambda_{n}\left(=\lambda_{\text {max }}(\lambda)\right)
\end{aligned}
\end{aligned}
$$

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

- The numerical range contains the spectrum of \boldsymbol{A}.
- If \boldsymbol{A} is Hermitian, then $\lambda_{\min }(\boldsymbol{A}) \leqslant R_{\boldsymbol{A}}(\boldsymbol{x}) \leqslant \lambda_{\max }(\boldsymbol{A})$.

We can also consider the image of the Rayleigh quotient but only on a subspace V :

$$
W_{\boldsymbol{A}}(V):=R_{\boldsymbol{A}}(V \backslash\{\mathbf{0}\}) .
$$

Rayleigh quotients, II

Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Consider a subspace $V \subset \mathbb{C}^{n}$.
The image of the V under the Rayleigh quotient, $W_{\boldsymbol{A}}(V)$, is some subset of \mathbb{R}.

Rayleigh quotients, II
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Consider a subspace $V \subset \mathbb{C}^{n}$.
The image of the V under the Rayleigh quotient, $W_{\boldsymbol{A}}(V)$, is some subset of \mathbb{R}.

- The minimum of $W_{\boldsymbol{A}}(V)$ can be $\lambda_{\min }(\boldsymbol{A})$. (if V contains minimal What is the largest possible minimum value?
eigerinvector of A)

Rayleigh quotients, II
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Consider a subspace $V \subset \mathbb{C}^{n}$.
The image of the V under the Rayleigh quotient, $W_{\boldsymbol{A}}(V)$, is some subset of \mathbb{R}.

- The minimum of $W_{\boldsymbol{A}}(V)$ can be $\lambda_{\min }(\boldsymbol{A})$. What is the largest possible minimum value?
- The maximum of $W_{\boldsymbol{A}}(V)$ can be $\lambda_{\max }(\boldsymbol{A})$. What is the smallest possible maximum value?

The "min-max" theorem

Theorem (Courant-Fischer-Weyl "min-max")
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian, with eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$. Then for each $1 \leqslant k \leqslant n$,

$$
\left.\left.\begin{array}{l}
\text { (\&) } \lambda_{k}=\min _{\substack{V \subset \mathbb{C}^{n} \\
\operatorname{dim} V=k}} \max W_{\boldsymbol{A}}(V)
\end{array} \lambda_{k}=\max _{\substack{V \subset \mathbb{C}^{n} \\
\operatorname{dim} V=n-k+1}} \min W_{\boldsymbol{A}}(V) \quad \max W_{A} \right\rvert\, \mathbb{C}^{n}\right) .
$$

In addition, if $\left(\boldsymbol{u}_{j}\right)_{j=1}^{n}$ are the eigenvectors associated with $\left(\lambda_{j}\right)_{j=1}^{n}$, then:

- $V=\operatorname{span}\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right\}$ achieves the outer minimum
- $V=\operatorname{span}\left\{\boldsymbol{u}_{k}, \ldots, \boldsymbol{u}_{n}\right\}$ achieves the outer maximum
well prove first min-max equation. (\$).
(\$)

$$
\begin{aligned}
\lambda_{K}= & \min _{V C \mathbb{C}^{n}} \max W_{A}(V) . \\
& \operatorname{dim} V=K
\end{aligned}
$$

well accomplish this by showing the \leq and 2 inequalities.
Let $V=\operatorname{span}\left\{u_{1} \ldots u_{k}\right\} \quad\left(\left(\lambda_{j}, u_{j}\right)_{j=1}^{n}\right.$ are eigenpairs of A)
$\max W_{A}(V)$

$$
\begin{aligned}
x \in V: R_{A}(x) & =\frac{\left\langle x_{1} A_{\gamma}\right\rangle}{\langle x, x\rangle} \quad x \in V \Rightarrow x=\sum_{j=1}^{k} c_{j} u_{j} \\
& =\frac{\left\langle x, \sum_{j=1}^{k} c_{j} \lambda_{j} u_{j}\right\rangle}{\left\langle x_{i}, \gamma\right\rangle}
\end{aligned}
$$

Let V be any k-dim subspace of \mathbb{C}^{n}. $\operatorname{span}\left\{u_{k}, u_{k+1} \ldots u_{n}\right\}$ is a dimension $(n-k+1)$ space.
Then $V \cap \operatorname{span}\left\{u_{k}, \ldots u_{n}\right\} \neq \phi$

$$
\begin{align*}
& \Rightarrow \exists v \neq 0 \text { set. } v=\sum_{j=k}^{n} c_{j} u_{j}, v \in V \text {. } \\
& R_{A}(v)=\frac{\left\langle v_{1} A v\right\rangle}{\left\langle v_{1} v\right\rangle}=\frac{\sum_{j=k}^{n}\left|c_{j}\right|^{2} \lambda_{j}}{\sum_{j=k}^{n}\left|c_{j}\right|^{2}} \geqslant \lambda_{k} \\
& \Rightarrow \max _{Y \in V} R_{A}(W)=\max W_{A}(V) \geq \lambda_{K} \quad(\forall k-\operatorname{dim} V) . \\
& \Rightarrow \min _{V C C^{n}} \max W_{A}(V) \geq \lambda_{k} . \\
& \Longrightarrow \lambda_{k}=\min _{V \subset c^{n}} \max _{\operatorname{dim}^{\prime} V=k} W_{A}(V)
\end{align*}
$$

Cauchy interlacing theorem
A matrix \boldsymbol{B} is a compression of \boldsymbol{A} if $\boldsymbol{B}=\boldsymbol{Q}^{*} \boldsymbol{A} \boldsymbol{Q}$ for some $\boldsymbol{Q} \in \mathbb{C}^{n \times r}$ with orthonormal columns.
orth

$$
A \in \mathbb{C}^{n+n} \quad B=Q^{\gamma} A Q \in \mathbb{C}^{r \times r}
$$

Cauchy interlacing theorem

A matrix \boldsymbol{B} is a compression of \boldsymbol{A} if $\boldsymbol{B}=\boldsymbol{Q}^{*} \boldsymbol{A} \boldsymbol{Q}$ for some $\boldsymbol{Q} \in \mathbb{C}^{n \times r}$ with othonormal columns.

Just one consequence of the min-max theorem:
Theorem (Cauchy interlacing)
Let $\boldsymbol{B} \in \mathbb{C}^{(n-1) \times(n-1)}$ be a compression of a Hermitian matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. If \boldsymbol{A} has eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$, and \boldsymbol{B} has eigenvalues $\mu_{1}, \ldots, \mu_{n-1}$, then
$\begin{array}{llllll}\lambda_{1} & \mu_{2} & \mu_{2} \\ \lambda_{2} & x_{3} & \cdots & \dot{\lambda}_{n-1} & \lambda_{n}^{\mu_{n-1}}\end{array} \lambda_{j} \leqslant \mu_{j} \leqslant \lambda_{j+1}$,
for all $j=1, \ldots, n-1$.
B is Hermitian $\Rightarrow \mu_{j}$ are \mathbb{R}-valued
Assume $\mu_{1} \leq \mu_{2} \leqslant \ldots \leq \mu_{n-1}$.

Prot:
Recall: if $U=\operatorname{span}\left\{u_{1} \ldots u_{j}\right\}$, where

$$
\begin{aligned}
& \left(\mu_{i=1}, u_{j}\right)_{k j-1}^{n-1} \text { are eigen pairs of } B \text {. } \\
& =\max R_{B}|x|=\max \frac{\left.B_{x}, \gamma\right\rangle}{\left\langle{ }_{x}\right\rangle} \quad \text { define of } B \text {, and } \\
& \mu_{j}=\max _{\left.x \in U \backslash S_{0}\right\}} R_{B}|x\rangle=\max _{x \in U \backslash \min ^{3}\left\langle x_{1} x\right\rangle}^{\left.\left\langle x_{1}\right\rangle\right\rangle} \quad \text { deon of } B \text {, } Q^{+} Q=I \text {. }
\end{aligned}
$$

Then: $\mu_{j}=\max _{x \in u\{\{0\}} \frac{\left.\left\langle B_{x},\right\rangle\right\rangle}{\langle x, x\rangle}=\max _{x \in u \backslash\{0\}} \frac{\left\langle A Q_{x}, Q_{x}\right\rangle}{\left\langle Q_{x}, Q_{x}\right\rangle}$

$$
\begin{array}{ll}
=\max _{y \in Q U \backslash\{0\}} \frac{\left\langle A_{y}, y\right\rangle}{\langle y, y\rangle}, & \text { where } Q U:=\left\{Q_{y} \mid y \in U\right\} \\
& \operatorname{dim} Q U=j
\end{array}
$$

is j-dimsubspare $\quad \operatorname{dim} Q U=j$

$$
\geq \min _{\operatorname{dim} V=j} \max \frac{\left\langle A_{y}, y\right\rangle}{\langle y, y\rangle}=\lambda_{j}
$$

Courant-Fischer-Wey)

$$
\Rightarrow \mu_{j} \geq d_{j}
$$

Other inequality: $U:=\operatorname{span}\left\{u_{j}, u_{j+1} \ldots u_{n-1}\right\}$
Consider $\mu_{j}=\min _{x \in U \backslash\{0\}} R_{B}(x)$.
and perform similar computations.

