# Variational characterizations of eigenvalues

MATH 6610 Lecture 04

September 9, 2020

#### Hermitian matrices

If  $A \in \mathbb{C}^{n \times n}$  is Hermitian, recall that:

- A is unitarily diagonalizable,  $A = U\Lambda U^*$
- ullet The spectrum of  $oldsymbol{A}$  is real-valued
- (Hermitian) Positive-definite matrices have matrix square roots

#### Hermitian matrices

If  $A \in \mathbb{C}^{n \times n}$  is Hermitian, recall that:

- ullet  $oldsymbol{A}$  is unitarily diagonalizable,  $oldsymbol{A} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^*$
- ullet The spectrum of A is real-valued
- (Hermitian) Positive-definite matrices have matrix square roots

Today: Variational characterizations of eigenvalues for Hermitian matrices.

Let  $A \in \mathbb{C}^{n \times n}$  be a matrix, and let  $x \in \mathbb{C}^n \backslash \{\mathbf{0}\}$  be a vector.

The Rayleigh Quotient (of A at x) is the scalar,

$$R_{\boldsymbol{A}}(\boldsymbol{x}) \coloneqq \frac{\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$$

Let  $A \in \mathbb{C}^{n \times n}$  be a matrix, and let  $x \in \mathbb{C}^n \backslash \{\mathbf{0}\}$  be a vector.

The Rayleigh Quotient (of A at x) is the scalar,

$$R_{\boldsymbol{A}}(\boldsymbol{x}) \coloneqq \frac{\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$$

• The numerical range of A is the set of all possible values of  $R_A$ :

$$W_{\mathbf{A}}(\mathbb{C}^n) := R_{\mathbf{A}}\left(\mathbb{C}^n \setminus \{\mathbf{0}\}\right).$$

Let  $A \in \mathbb{C}^{n \times n}$  be a matrix, and let  $x \in \mathbb{C}^n \backslash \{\mathbf{0}\}$  be a vector.

The Rayleigh Quotient (of A at x) is the scalar,

$$R_{\boldsymbol{A}}(\boldsymbol{x}) \coloneqq \frac{\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$$

• The numerical range of A is the set of all possible values of  $R_A$ :

$$W_{\mathbf{A}}(\mathbb{C}^n) := R_{\mathbf{A}}\left(\mathbb{C}^n \setminus \{\mathbf{0}\}\right).$$

ullet The numerical range contains the spectrum of A.

Let  $A \in \mathbb{C}^{n \times n}$  be a matrix, and let  $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$  be a vector.

The Rayleigh Quotient (of A at x) is the scalar,

$$R_{\boldsymbol{A}}(\boldsymbol{x}) \coloneqq \frac{\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$$

• The numerical range of A is the set of all possible values of  $R_A$ :

$$W_{\mathbf{A}}(\mathbb{C}^n) := R_{\mathbf{A}}\left(\mathbb{C}^n \setminus \{\mathbf{0}\}\right).$$

- ullet The numerical range contains the spectrum of A.
- If A is Hermitian, then  $\lambda_{\min}(A) \leqslant R_A(x) \leqslant \lambda_{\max}(A)$ .

Let  $A \in \mathbb{C}^{n \times n}$  be a matrix, and let  $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$  be a vector.

The Rayleigh Quotient (of A at x) is the scalar,

$$R_{\boldsymbol{A}}(\boldsymbol{x}) \coloneqq \frac{\langle \boldsymbol{A} \boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$$

• The numerical range of A is the set of all possible values of  $R_A$ :

$$W_{\mathbf{A}}(\mathbb{C}^n) := R_{\mathbf{A}}(\mathbb{C}^n \setminus \{\mathbf{0}\}).$$

- ullet The numerical range contains the spectrum of  $oldsymbol{A}$ .
- If A is Hermitian, then  $\lambda_{\min}(A) \leqslant R_A(x) \leqslant \lambda_{\max}(A)$ .

We can also consider the image of the Rayleigh quotient but only on a subspace V:

$$W_{\mathbf{A}}(V) := R_{\mathbf{A}}(V \setminus \{\mathbf{0}\}).$$

Let  $A \in \mathbb{C}^{n \times n}$  be Hermitian. Consider a subspace  $V \subset \mathbb{C}^n$ .

The image of the V under the Rayleigh quotient,  $W_{\mathbf{A}}(V)$ , is some subset of  $\mathbb{R}.$ 

Let  $A \in \mathbb{C}^{n \times n}$  be Hermitian. Consider a subspace  $V \subset \mathbb{C}^n$ .

The image of the V under the Rayleigh quotient,  $W_{\mathbf{A}}(V)$ , is some subset of  $\mathbb{R}$ .

• The minimum of  $W_{\boldsymbol{A}}(V)$  can be  $\lambda_{\min}(\boldsymbol{A})$ . What is the largest possible minimum value?

Let  $A \in \mathbb{C}^{n \times n}$  be Hermitian. Consider a subspace  $V \subset \mathbb{C}^n$ .

The image of the V under the Rayleigh quotient,  $W_{\mathbf{A}}(V)$ , is some subset of  $\mathbb{R}$ .

- The minimum of  $W_{\boldsymbol{A}}(V)$  can be  $\lambda_{\min}(\boldsymbol{A})$ . What is the largest possible minimum value?
- The maximum of  $W_{\mathbf{A}}(V)$  can be  $\lambda_{\max}(\mathbf{A})$ . What is the smallest possible maximum value?

#### The "min-max" theorem

#### Theorem (Courant-Fischer-Weyl "min-max")

Let  $A \in \mathbb{C}^{n \times n}$  be Hermitian, with eigenvalues  $\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$ . Then for each  $1 \leqslant k \leqslant n$ ,

$$\lambda_k = \min_{\substack{V \subset \mathbb{C}^n \\ \dim V = k}} \max W_{\mathbf{A}}(V)$$
$$\lambda_k = \max_{\substack{V \subset \mathbb{C}^n \\ \dim V = n-k+1}} \min W_{\mathbf{A}}(V)$$

In addition, if  $(u_j)_{j=1}^n$  are the eigenvectors associated with  $(\lambda_j)_{j=1}^n$ , then:

- $V = \operatorname{span}\{\boldsymbol{u}_1, \dots, \boldsymbol{u}_k\}$  achieves the outer minimum
- $V = \operatorname{span}\{\boldsymbol{u}_k, \dots, \boldsymbol{u}_n\}$  achieves the outer maximum

## Cauchy interlacing theorem

A matrix B is a compression of A if  $B=Q^*AQ$  for some  $Q\in\mathbb{C}^{n\times r}$  with othonormal columns.

## Cauchy interlacing theorem

A matrix B is a compression of A if  $B = Q^*AQ$  for some  $Q \in \mathbb{C}^{n \times r}$  with othonormal columns.

Just one consequence of the min-max theorem:

### Theorem (Cauchy interlacing)

Let  $B \in \mathbb{C}^{(n-1)\times (n-1)}$  be a compression of a Hermitian matrix  $A \in \mathbb{C}^{n\times n}$ . If A has eigenvalues  $\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$ , and B has eigenvalues  $\mu_1, \ldots, \mu_{n-1}$ , then

$$\lambda_j \leqslant \mu_j \leqslant \lambda_{j+1},$$

for all j = 1, ..., n - 1.