Variational characterizations of eigenvalues

MATH 6610 Lecture 04

September 9, 2020

Hermitian matrices

If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, recall that:

- \boldsymbol{A} is unitarily diagonalizable, $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}$
- The spectrum of \boldsymbol{A} is real-valued
- (Hermitian) Positive-definite matrices have matrix square roots

Hermitian matrices

If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, recall that:

- \boldsymbol{A} is unitarily diagonalizable, $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}$
- The spectrum of \boldsymbol{A} is real-valued
- (Hermitian) Positive-definite matrices have matrix square roots

Today: Variational characterizations of eigenvalues for Hermitian matrices.

Rayleigh quotients, I

Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

- The numerical range contains the spectrum of \boldsymbol{A}.

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

- The numerical range contains the spectrum of \boldsymbol{A}.
- If \boldsymbol{A} is Hermitian, then $\lambda_{\min }(\boldsymbol{A}) \leqslant R_{\boldsymbol{A}}(\boldsymbol{x}) \leqslant \lambda_{\max }(\boldsymbol{A})$.

Rayleigh quotients, I
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be a matrix, and let $\boldsymbol{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ be a vector.
The Rayleigh Quotient (of \boldsymbol{A} at \boldsymbol{x}) is the scalar,

$$
R_{\boldsymbol{A}}(\boldsymbol{x}):=\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- The numerical range of \boldsymbol{A} is the set of all possible values of $R_{\boldsymbol{A}}$:

$$
W_{\boldsymbol{A}}\left(\mathbb{C}^{n}\right):=R_{\boldsymbol{A}}\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) .
$$

- The numerical range contains the spectrum of \boldsymbol{A}.
- If \boldsymbol{A} is Hermitian, then $\lambda_{\text {min }}(\boldsymbol{A}) \leqslant R_{\boldsymbol{A}}(\boldsymbol{x}) \leqslant \lambda_{\max }(\boldsymbol{A})$.

We can also consider the image of the Rayleigh quotient but only on a subspace V :

$$
W_{\boldsymbol{A}}(V):=R_{\boldsymbol{A}}(V \backslash\{\mathbf{0}\}) .
$$

Rayleigh quotients, II

Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Consider a subspace $V \subset \mathbb{C}^{n}$.
The image of the V under the Rayleigh quotient, $W_{A}(V)$, is some subset of \mathbb{R}.

Rayleigh quotients, II
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Consider a subspace $V \subset \mathbb{C}^{n}$.
The image of the V under the Rayleigh quotient, $W_{A}(V)$, is some subset of \mathbb{R}.

- The minimum of $W_{\boldsymbol{A}}(V)$ can be $\lambda_{\min }(\boldsymbol{A})$. What is the largest possible minimum value?

Rayleigh quotients, II
Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Consider a subspace $V \subset \mathbb{C}^{n}$.
The image of the V under the Rayleigh quotient, $W_{A}(V)$, is some subset of \mathbb{R}.

- The minimum of $W_{\boldsymbol{A}}(V)$ can be $\lambda_{\min }(\boldsymbol{A})$. What is the largest possible minimum value?
- The maximum of $W_{\boldsymbol{A}}(V)$ can be $\lambda_{\max }(\boldsymbol{A})$. What is the smallest possible maximum value?

The "min-max" theorem

Theorem (Courant-Fischer-Weyl "min-max")

Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ be Hermitian, with eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$. Then for each $1 \leqslant k \leqslant n$,

$$
\begin{aligned}
& \lambda_{k}=\min _{\substack{V \subset \mathbb{C}^{n} \\
\operatorname{dim} V=k}} \max W_{\boldsymbol{A}}(V) \\
& \lambda_{k}=\max _{\operatorname{dim} V \subset \mathbb{C}^{n}} \min W_{\boldsymbol{A}}(V)
\end{aligned}
$$

In addition, if $\left(\boldsymbol{u}_{j}\right)_{j=1}^{n}$ are the eigenvectors associated with $\left(\lambda_{j}\right)_{j=1}^{n}$, then:

- $V=\operatorname{span}\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right\}$ achieves the outer minimum
- $V=\operatorname{span}\left\{\boldsymbol{u}_{k}, \ldots, \boldsymbol{u}_{n}\right\}$ achieves the outer maximum

Cauchy interlacing theorem

A matrix \boldsymbol{B} is a compression of \boldsymbol{A} if $\boldsymbol{B}=\boldsymbol{Q}^{*} \boldsymbol{A} \boldsymbol{Q}$ for some $\boldsymbol{Q} \in \mathbb{C}^{n \times r}$ with othonormal columns.

Cauchy interlacing theorem

A matrix \boldsymbol{B} is a compression of \boldsymbol{A} if $\boldsymbol{B}=\boldsymbol{Q}^{*} \boldsymbol{A} \boldsymbol{Q}$ for some $\boldsymbol{Q} \in \mathbb{C}^{n \times r}$ with othonormal columns.

Just one consequence of the min-max theorem:
Theorem (Cauchy interlacing)
Let $\boldsymbol{B} \in \mathbb{C}^{(n-1) \times(n-1)}$ be a compression of a Hermitian matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. If \boldsymbol{A} has eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$, and \boldsymbol{B} has eigenvalues $\mu_{1}, \ldots, \mu_{n-1}$, then

$$
\lambda_{j} \leqslant \mu_{j} \leqslant \lambda_{j+1},
$$

for all $j=1, \ldots, n-1$.

