Eigendecompositions of Hermitian matrices

MATH 6610 Lecture 03

September 4, 2020

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?

A spectral theorem
Theorem ("Spectral the for Hermitian matrices") If $\boldsymbol{A} \in \mathbb{T}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
Hermitian matrices are also called self-adjoint. ($A=A^{3}$)
Ie., $A=A^{*} \Rightarrow \exists$ unitary matrix U s.t.
$A=U A U^{*}, \Lambda$ is diagonal with real entries.
Proof: first: show λ (an eigenvalue) is real.
Let (λ, v) be an eigenpair $\left(\left\|_{v}\right\|_{2} \neq 0\right)$.

$$
\lambda\|v\|_{2}^{2}=\langle\lambda v, v\rangle=\langle A v, v\rangle=\langle v, A v\rangle=\langle v, \lambda v\rangle=\lambda^{*}\|v\|_{2}^{2}
$$

$$
\lambda=\lambda^{*} \Rightarrow \lambda \in \mathbb{R} \text {. }
$$

Now: show t's unitarily diagonalizable. Strategy' induction
1.) Identify (λ, v) an eigenpair
2.) "Compress" A to an $(n-1) r \mid n-1)$ matrix corresponds to the orthogonal complement of span $\{r\}$.
Details: $n=1$

$$
\begin{aligned}
A=A^{*} & \Rightarrow A \in \mathbb{R} \\
A & =1 \cdot A \cdot 1 \quad \checkmark \text { Hermitian }
\end{aligned}
$$

Inductive hypothesis: assume any $V_{B} \in \mathbb{C}^{(n-1) x(n-1)}$
is unitarily diagunalizable: $B=U \wedge U^{*}$ $\left(U^{*} U=I, \Lambda=\operatorname{diag}\left(\lambda_{1} \cdot \lambda_{h_{-}-1}\right)\right)$
Let $A=A^{*} \in \mathbb{C}^{n \times n}$.
Let (λ, v) be any eigenpar for A. without logs: take $\operatorname{HuN}_{2}=1$.

Define $P=V V^{*} \rightarrow$ this is the orthogonal projector onto span $\{v\}$.
$P^{\perp}==I-P \rightarrow$ this is the orthogonal projector ant W : = orthogonal complement of span $\{0\}$.

$$
\begin{aligned}
& A=I-A \cdot I=\left(P+P^{+}\right) A\left(P+P^{+}\right) \\
&=P A P+P^{+} A P^{+}+P A P^{+}+P^{+} A P .
\end{aligned}
$$

(1) (2)
(4): Let $x \in \mathbb{C}^{n}$

$$
\begin{aligned}
P^{+} A P_{x} & =P^{+} A(c v) \quad \text { (for some } \\
& =c P^{+} \lambda v \\
& =c \lambda P^{+} v=0 \\
\Rightarrow P^{+} A P & =0 .
\end{aligned}
$$

(3): same thing $\left(A=A^{*}\right)$ implies $P A P^{+}=0$.
(1). $P=v v^{8}$

$$
\begin{aligned}
& P=V V^{*} \\
& P A P=V V^{*} A V V^{*}=\lambda V V^{*} V V^{*} \\
&=\lambda V V^{*}
\end{aligned}
$$

(2) $P^{+} A P^{\perp}$

$$
P^{\perp}=Q Q^{*}, Q=\left(\begin{array}{cc}
1 & 1 \\
q_{1} & \cdots \\
1 & q_{n-1}
\end{array}\right) \in C^{n \times[n-1]}
$$

where $\left\{q_{j}\right\}_{j=1}^{n-1}$ is an orthonormal basis for W.

$$
\begin{gathered}
P^{+} A P t=Q \underbrace{Q^{*} A Q Q^{*}=Q B Q^{*}}_{\text {"B } B^{\prime \prime} \in C^{(n-1) \times(n-1)}} \\
\left.B=B^{*} \text { (sine } A=A^{*}\right)
\end{gathered}
$$

inductive hypothesis: $B=U \wedge U^{*}, U^{*} U=I$

$$
\begin{aligned}
P^{+} A P^{+}=Q B Q^{*} & =\underbrace{}_{\begin{array}{c}
S \in C^{n(n-1)} \\
\left(S^{*} S=I\right)
\end{array} \text { has }^{Q U} \Lambda U^{*} Q^{*}} \text { columns. } \\
& =S \Lambda S^{*}
\end{aligned}
$$

Also: columns of S are orthogonal to V.

$$
\begin{aligned}
& (\operatorname{range}(Q)=W) \text {. } \\
& S=\left(\begin{array}{cc}
1 & 1 \\
s_{1} \cdots s_{n-1} \\
1 & 1
\end{array}\right) \longrightarrow S \Lambda S^{*}=\sum_{j=1}^{n-1} S_{j} s_{j}^{*} \lambda_{j} \\
& \Lambda=\operatorname{diag}\left(\lambda_{1} \ldots \lambda_{n-1}\right) \text {. } \\
& \text { So: } P^{+} A P^{+}=\sum_{j=1}^{n-1} S_{j} S_{j} \lambda_{j} \\
& \Rightarrow A=P A P+P^{+} A P^{+}=d V^{x}+\sum_{j=1}^{n-1} \lambda_{j} s_{j} s_{j}^{*} \\
& =\widetilde{u} \tilde{\Lambda} \tilde{U}^{*} \\
& \tilde{U}=\left(\begin{array}{cccc}
1 & 1 & & 1 \\
v_{1} & s_{1} & \cdots & s_{n-1} \\
1 & 1 & & 1
\end{array}\right), \begin{array}{l}
I=\operatorname{diog}\left(\lambda, k_{1}-k_{n-1}\right) \\
\\
\tilde{U}^{+} \tilde{U}=I \quad \square
\end{array}
\end{aligned}
$$

A spectral theorem

Theorem
If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
Hermitian matrices are also called self-adjoint. If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, then it can be written as

$$
\begin{aligned}
& \text { an be written as matrix alg } \\
& \boldsymbol{A}=\underline{\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}}={ }^{=} \sum_{j=1}^{n} \lambda_{j} \boldsymbol{u}_{j} \boldsymbol{u}_{j}^{*},
\end{aligned}
$$

where $\left\{\boldsymbol{u}_{j}\right\}_{j=1}^{n}$ are the columns of \boldsymbol{U}. (which are orthrnumal).

$$
A_{x}=\sum_{j=1}^{n} d_{j} \underbrace{\left.x_{j}, u_{j}\right\rangle}_{\text {"amount" of } x \text { points in } u_{j} u_{j} .}\rangle u_{j} \quad
$$

A spectral theorem

Theorem
If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
Hermitian matrices are also called self-adjoint. If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, then it can be written as

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}=\sum_{j=1}^{n} \lambda_{j} \boldsymbol{u}_{j} \boldsymbol{u}_{j}^{*}
$$

where $\left\{\boldsymbol{u}_{j}\right\}_{j=1}^{n}$ are the columns of \boldsymbol{U}.

For example, the spectral radius of a matrix \boldsymbol{A} is

$$
\rho(\boldsymbol{A}):=\max _{j=1, \ldots, n}\left|\lambda_{j}(\boldsymbol{A})\right|
$$

If \boldsymbol{A} is Hermitian, then $\|\boldsymbol{A}\|_{2}=\rho(\boldsymbol{A})$. (this is our firrst conaputable
(Hermitian) Positive-definite matrices
A matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (sometimes symmetric positive-definite or "spd") if it's Hermitian and its spectrum is strictly positive.
(Respectively, positive semi-definite if the spectrum is non-negative.)

$$
A \text { is sped } \Rightarrow \lambda(A) \in(0, \infty) \text {. }
$$

(Hermitian) Positive-definite matrices
A matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (sometimes symmetric positive-definite or "spd") if it's Hermitian and its spectrum is strictly positive.
(Respectively, positive semi-definite if the spectrum is non-negative.)
Such matrices actually define a norm: $\|\boldsymbol{x}\|_{\boldsymbol{A}}^{2}:=\boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x}$ is a norm.

$$
\begin{aligned}
& \left.=\left\langle A_{\gamma},\right\rangle\right\rangle=\left\langle x, A_{x}\right\rangle \\
& \left(\text { different from }\left\langle A_{x}, A x\right\rangle\right) .
\end{aligned}
$$

Matrix square roots

There is also a functional calculus on spd matrices.
For example, a matrix S is the square root of a matrix \boldsymbol{A} if $\boldsymbol{A}=\boldsymbol{S}^{2}$.

Matrix square roots
There is also a functional calculus on spd matrices.
For example, a matrix \boldsymbol{S} is the square root of a matrix \boldsymbol{A} if $\boldsymbol{A}=\boldsymbol{S}^{2}$.
Example
If \boldsymbol{A} is spd, compute a matrix square root of \boldsymbol{A}.

$$
\begin{aligned}
& A=U A U^{*}, \quad A=\operatorname{diag}\left(b_{1} \ldots \lambda_{n}\right) \quad\left(A \in \mathbb{C}^{n+n}\right) \\
& \lambda_{j}>0 \forall j . \\
& \sqrt{\Lambda}:=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right) . \\
& S=U \boxed{A} U^{*} \Rightarrow S \cdot=U \Delta U^{*}=A . \\
& \text { "S} \left.=\sqrt{A} \text { ! (Note that } S=S^{*}\right)
\end{aligned}
$$

Matrix square roots
There is also a functional calculus on std matrices.
For example, a matrix \boldsymbol{S} is the square root of a matrix \boldsymbol{A} if $\boldsymbol{A}=\boldsymbol{S}^{2}$.
Example
If \boldsymbol{A} is std, compute a matrix square root of \boldsymbol{A}.
Theorem
If \boldsymbol{A} is spd, then there is a(n essentially) unique sped square root of \boldsymbol{A}.
(It's the one from the previous exdwple.) "essentially"? Up to unitary transformations of eigenspace E_{λ} with geometric multiplicity greater than 1.

