Eigendecompositions of Hermitian matrices

MATH 6610 Lecture 03

September 4, 2020

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?

A spectral theorem

Theorem
If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
Hermitian matrices are also called self-adjoint.

A spectral theorem

Theorem
If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
Hermitian matrices are also called self-adjoint. If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, then it can be written as

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}=\sum_{j=1}^{n} \lambda_{j} \boldsymbol{u}_{j} \boldsymbol{u}_{j}^{*}
$$

where $\left\{\boldsymbol{u}_{j}\right\}_{j=1}^{n}$ are the columns of \boldsymbol{U}.

A spectral theorem

Theorem

If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
Hermitian matrices are also called self-adjoint. If $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, then it can be written as

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{*}=\sum_{j=1}^{n} \lambda_{j} \boldsymbol{u}_{j} \boldsymbol{u}_{j}^{*}
$$

where $\left\{\boldsymbol{u}_{j}\right\}_{j=1}^{n}$ are the columns of \boldsymbol{U}.

For example, the spectral radius of a matrix \boldsymbol{A} is

$$
\rho(\boldsymbol{A}):=\max _{j=1, \ldots, n}\left|\lambda_{j}(\boldsymbol{A})\right|
$$

If \boldsymbol{A} is Hermitian, then $\|\boldsymbol{A}\|_{2}=\rho(\boldsymbol{A})$.

(Hermitian) Positive-definite matrices

A matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (sometimes symmetric positive-definite or "spd") if it's Hermitian and its spectrum is strictly positive. (Respectively, positive semi-definite if the spectrum is non-negative.)

(Hermitian) Positive-definite matrices

A matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (sometimes symmetric positive-definite or "spd") if it's Hermitian and its spectrum is strictly positive.
(Respectively, positive semi-definite if the spectrum is non-negative.)
Such matrices actually define a norm: $\|\boldsymbol{x}\|_{\boldsymbol{A}}^{2}:=\boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x}$ is a norm.

Matrix square roots

There is also a functional calculus on spd matrices.
For example, a matrix S is the square root of a matrix A if $A=S^{2}$.

Matrix square roots

There is also a functional calculus on spd matrices.
For example, a matrix S is the square root of a matrix A if $A=S^{2}$.

Example

If \boldsymbol{A} is spd, compute a matrix square root of \boldsymbol{A}.

Matrix square roots

There is also a functional calculus on spd matrices.
For example, a matrix S is the square root of a matrix A if $A=S^{2}$.

Example

If \boldsymbol{A} is spd, compute a matrix square root of \boldsymbol{A}.
Theorem
If \boldsymbol{A} is spd, then there is a(n essentially) unique spd square root of \boldsymbol{A}.

