L03-S00

Eigendecompositions of Hermitian matrices

MATH 6610 Lecture 03

September 4, 2020

Hermitian matrices

L03-S01

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

L03-S01

Diagonalizability

Recall:

- All non-defective square matrices are diagonalizable (eigenvalue decomposition)
- All square matrices are bidiagonalizable (Jordan normal form)
- All square matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?

A spectral theorem

L03-S02

Theorem

If $A \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.

Hermitian matrices are also called *self-adjoint*.

A spectral theorem

L03-S02

Theorem

If $A \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.

Hermitian matrices are also called *self-adjoint*. If $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, then it can be written as

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^* = \sum_{j=1}^n \lambda_j \boldsymbol{u}_j \boldsymbol{u}_j^*,$$

where $\{u_j\}_{j=1}^n$ are the columns of $oldsymbol{U}$.

A spectral theorem

L03-S02

Theorem

If $A \in \mathbb{C}^{n \times n}$ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.

Hermitian matrices are also called *self-adjoint*. If $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, then it can be written as

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^* = \sum_{j=1}^n \lambda_j \boldsymbol{u}_j \boldsymbol{u}_j^*,$$

where $\{ \boldsymbol{u}_j \}_{j=1}^n$ are the columns of $\boldsymbol{U}.$

For example, the *spectral radius* of a matrix \boldsymbol{A} is

$$\rho(\boldsymbol{A}) \coloneqq \max_{j=1,\dots,n} |\lambda_j(\boldsymbol{A})|$$

If A is Hermitian, then $\|A\|_2 = \rho(A)$.

Hermitian matrices

(Hermitian) Positive-definite matrices

A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (sometimes *symmetric* positive-definite or "spd") if it's Hermitian and its spectrum is strictly positive.

(Respectively, positive semi-definite if the spectrum is non-negative.)

(Hermitian) Positive-definite matrices

A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian positive definite (sometimes *symmetric* positive-definite or "spd") if it's Hermitian and its spectrum is strictly positive.

(Respectively, positive semi-definite if the spectrum is non-negative.)

Such matrices actually define a norm: $\|x\|_{A}^{2} \coloneqq x^{*}Ax$ is a norm.

Matrix square roots

There is also a functional calculus on spd matrices.

For example, a matrix S is the square root of a matrix A if $A = S^2$.

Matrix square roots

There is also a functional calculus on spd matrices.

For example, a matrix S is the square root of a matrix A if $A = S^2$.

Example

If A is spd, compute a matrix square root of A.

Matrix square roots

There is also a functional calculus on spd matrices.

For example, a matrix S is the square root of a matrix A if $A = S^2$.

Example

If A is spd, compute a matrix square root of A.

Theorem

If A is spd, then there is a(n essentially) unique spd square root of A.