L02-S00

Eigenvalues and eigenvectors

MATH 6610 Lecture 02

September 2, 2020

Lecture 24 (Trefethen & Ban)

Eigenvalues and eigenvectors

Given $A \in \mathbb{C}^{n \times n}$, $(\lambda, v) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$ is an eigenvalue-eigenvector pair if

 $Av = \lambda v.$

To compute eigenvectors, solve
$$(4-\lambda I)V = 0$$

for V .

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

 $\lambda(4) \subset \mathbf{C}$

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

• All square matrices have exactly n eigenvalues, with some possibly repeated.

102 - S02

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .

(ledanticolly: O is not an eigenvector, so set of all eigenvectors associated to λ cannot contain O, so cant be a subspace.)

102-S02

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.

 $AE_{\lambda} = E_{\lambda}$ μ $\{A\chi \mid \chi \in E_{\lambda}\}$

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic* multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $a_{1} = 2 \qquad a_{1} = 2 \qquad g_{1} = 1$

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic multiplicity*
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

•
$$1 \leq \sum_{\lambda \in \lambda(A)} g_{\lambda} \leq \sum_{\lambda \in \lambda(A)} a_{\lambda} = n.$$

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic multiplicity*
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .
- $1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$
- Simple eigenvalues λ have $g_{\lambda} = a_{\lambda} = 1$.

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic multiplicity*
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

•
$$1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$$

- Simple eigenvalues λ have $g_{\lambda} = a_{\lambda} = 1$.
- Eigenvalues λ with $g_{\lambda} < a_{\lambda}$ are *defective*

Bell

X=1 is defective.

102-S02

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic multiplicity*
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

•
$$1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$$

- Simple eigenvalues λ have $g_{\lambda} = a_{\lambda} = 1$.
- Eigenvalues λ with $g_{\lambda} < a_{\lambda}$ are *defective*
- Any A such that $\sum_{\lambda \in \lambda(A)} g_{\lambda} < n$ is defective.

Two square matrices A and B are *similar* if \exists an invertible S such that

$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Two square matrices $oldsymbol{A}$ and $oldsymbol{B}$ are *similar* if \exists an invertible $oldsymbol{S}$ such that

$$B = S^{-1}AS.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Definition

A square matrix $A \in \mathbb{C}^{n \times n}$ is <u>diagonalizable</u> if it is similar to a diagonal matrix.

Two square matrices A and B are *similar* if \exists an invertible S such that

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Definition

A square matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Theorem

Λ 1

A square matrix A is diagonalizable iff it is not defective. Alm - I

1.5

$$root (approximately)$$

if A is diagonalizable. $D = S^{-1}AS$

Il. D=STAS SD=AS $S = \begin{bmatrix} s_1 & \cdots & s_n \end{bmatrix}$ $>=7dis_1-dusu$ = As, -- Asn] this implies A not defective. Other may: Similar. ----

Two square matrices A and B are *similar* if \exists an invertible S such that

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Definition

A square matrix $A \in \mathbb{C}^{n \times n}$ is <u>diagonalizable</u> if it is similar to a diagonal matrix.

Theorem

A square matrix A is diagonalizable iff it is not defective.

When A is not defective, it is diagonalizable via a matrix whose columns are comprised of its linearly independent eigenvectors.

$$AV = AV$$
, $A = V'AV$. $V = \begin{bmatrix} v_1 - v_n \end{bmatrix}$
 $A = diay(h_1 - d_n)$.

Similarity invariances

L02-S04

The set of eigenvalues is invariant under a similarity transform.

Similarity invariances

The set of eigenvalues is invariant under a similarity transform.

This implies that if A is diagonalizable, then

det
$$\boldsymbol{A} = \prod_{j=1}^{n} \lambda_j$$
, $\operatorname{Tr} \boldsymbol{A} = \sum_{j=1}^{n} \lambda_j$.

The above is actually true for any square matrix A, defective or not.

Generalizations

While not all square matrices are diagonalizable...

 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

L02-S05

Generalizations

While not all square matrices are diagonalizable...

• ...all matrices are bidiagonalizable (Jordan normal form)

 $A = V^{-1} \mathcal{J} V$ only J: bidiagonal (entres on main and superdiagonal).

Generalizations

While not all square matrices are diagonalizable...

 $A = U^{*}TU T = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

similarity transform is unitary (U)

Generalizations

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?