Eigenvalues and eigenvectors

MATH 6610 Lecture 02

September 2, 2020
Lecture 24 (Trefcthen \& Bour)

Eigenvalues and eigenvectors
Given $\boldsymbol{A} \in \mathbb{C}^{n \times n},(\lambda, \boldsymbol{v}) \in \mathbb{C} \times\left(\mathbb{C}^{n} \backslash\{0\}\right)$ is an eigenvalue-eigenvector pair if

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v} .
$$

to find eigenvalues (on paper):
compute roots of $\operatorname{det}(A-\lambda I)$
λ
To compute eigenvectors, solve $(A-\lambda I) V=0$ for V.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

N(A) $\subset \mathbb{C}$

Eigenpair properties
There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$.
With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
$\operatorname{det}(A-\lambda I)$ is a degree en poly. in λ,
so Fund. Theorem of Algebra, $\exists n$ complex-valued roots (possibly repeated)

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.

Eigenpair properties
There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
(Pedantically: 0 is nor an eigenvector,
so set of all eigenvectors associated
$+\lambda$ corot contain 0 , so
can 7 be a subspace)'

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.

$$
\begin{aligned}
& A E_{\lambda}=E_{\lambda} \\
& u \\
& \left\{A x \mid x \in E_{\lambda}\right\}
\end{aligned}
$$

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
a_{1}=g_{1}=2 & a_{1}=2, g_{1}=1
\end{array}
$$

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.
- Simple eigenvalues λ have $g_{\lambda}=a_{\lambda}=1$.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.
- Simple eigenvalues λ have $g_{\lambda}=a_{\lambda}=1$.

$$
B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

- Eigenvalues λ with $g_{\lambda}<a_{\lambda}$ are defective

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.
- Simple eigenvalues λ have $g_{\lambda}=a_{\lambda}=1$.
- Eigenvalues λ with $g_{\lambda}<a_{\lambda}$ are defective
- Any \boldsymbol{A} such that $\sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda}<n$ is defective.

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
B=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
B=S^{-1} A S
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)

Definition

A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
\boldsymbol{B}=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)
Definition
A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Theorem

A square matrix \boldsymbol{A} is diagonalizable eff it is not defective.
Proof (approximately)

Ie. $D=S^{-1} A S$

$$
\begin{aligned}
S D & =A S \\
S & =\left[\begin{array}{lll}
S_{1} & \cdots & S_{n} \\
1
\end{array}\right] \\
M & \Rightarrow\left[d_{1} S_{1} \cdots d_{n} S_{n}\right] \\
& =\left[S_{s_{1}} \cdots A s_{n}\right]
\end{aligned}
$$

this implies a not detective.
Other way: similar....

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
\boldsymbol{B}=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)

Definition

A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Theorem

A square matrix \boldsymbol{A} is diagonalizable eff it is not defective.
When \boldsymbol{A} is not defective, it is diagonalizable via a matrix whose columns are comprised of its linearly independent eigenvectors.

$$
\begin{array}{r}
A V=\Lambda V, A=V^{-1} \Lambda V . \\
\Lambda=\operatorname{diay}\left(t_{1}-\lambda_{n}\right) .
\end{array}
$$

$V=\left[\begin{array}{cc}U_{1} & 1 \\ 1 & -U_{n} \\ & \\ 1\end{array}\right]$

Similarity invariances

The set of eigenvalues is invariant under a similarity transform.

Similarity invariances

The set of eigenvalues is invariant under a similarity transform.

This implies that if \boldsymbol{A} is diagonalizable, then

$$
\operatorname{det} \boldsymbol{A}=\prod_{j=1}^{n} \lambda_{j}, \quad \operatorname{Tr} \boldsymbol{A}=\sum_{j=1}^{n} \lambda_{j}
$$

The above is actually true for any square matrix \boldsymbol{A}, defective or not.

Generalizations

While not all square matrices are diagonalizable...

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Generalizations
While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)

$$
\begin{aligned}
& A=V^{-1} J V \\
& J=\text { bidiayonal (centres on main } \\
& \text { and superdiagoual). }
\end{aligned}
$$

Generalizations
While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

$$
\text { similarity transform is unitary }(U)
$$

$$
A=U^{*} T U \quad T=(\square)
$$

Generalizations

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?

