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Eigenvalues and eigenvectors L02-501

Given A e C™*™, (A\,v) € C x (C™\{0}) is an eigenvalue-eigenvector pair if
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Eigenpair properties L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".

With he spectrum (collection of eigenvalues) of A:
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Eigenpair properties L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A\(A) the spectrum (collection of eigenvalues) of A:

@ All square matrices have exactly n eigenvalues, with some possibly
repeated.
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Eigenpair properties L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

@ All square matrices have exactly n eigenvalues, with some possibly
repeated.

@ All square matrices have at least 1 eigenvector.
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Eigenpair properties L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A\(A) the spectrum (collection of eigenvalues) of A:

@ All square matrices have exactly n eigenvalues, with some possibly
repeated.

@ All square matrices have at least 1 eigenvector.

@ The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .
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Eigenpair properties L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

@ All square matrices have exactly n eigenvalues, with some possibly
repeated.

@ All square matrices have at least 1 eigenvector.

@ The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .

@ Eigenspaces are invariant subspaces of A.
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Eigenpair properties

L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

A:(B%\

All square matrices have exactly n eigenvalues, with some possibly
repeated.

All square matrices have at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .

Eigenspaces are invariant subspaces of A.

is repeated a) is its algebraic

A

The number of times an eigenvalue
multiplicity

The geometric multiplicity gy of an eigenvalue A is dim FE.
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Eigenpair properties

L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

All square matrices have exactly n eigenvalues, with some possibly
repeated.

All square matrices have at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .

Eigenspaces are invariant subspaces of A.

The number of times an eigenvalue is repeated a) is its algebraic
multiplicity

The geometric multiplicity gy of an eigenvalue A is dim FE.
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Eigenpair properties

L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

All square matrices have exactly n eigenvalues, with some possibly
repeated.

All square matrices have at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .

Eigenspaces are invariant subspaces of A.

The number of times an eigenvalue is repeated a) is its algebraic
multiplicity

The geometric multiplicity gy of an eigenvalue A is dim FE.

1< 2hena) 9 < 2era) @ = 1.
Simple eigenvalues A have g\ = ay = 1.
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Eigenpair properties

L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

All square matrices have exactly n eigenvalues, with some possibly
repeated.

All square matrices have at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .

Eigenspaces are invariant subspaces of A.

The number of times an eigenvalue is repeated a) is its algebraic
multiplicity

The geometric multiplicity gy of an eigenvalue A is dim FE.
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Simple eigenvalues \ have gy = ay = 1. 0 |

Eigenvalues A with g\ < a) are defective ):[ f& &][60[/(!/( :
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Eigenpair properties

L02-502

There are many properties of eigenvalues and eigenvectors of A € C™*".
With A(A) the spectrum (collection of eigenvalues) of A:

All square matrices have exactly n eigenvalues, with some possibly
repeated.

All square matrices have at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a
subspace, and is frequently called an eigenspace E .

Eigenspaces are invariant subspaces of A.

The number of times an eigenvalue is repeated a) is its algebraic
multiplicity

The geometric multiplicity gy of an eigenvalue A is dim FE.
1< 2hena) 9 S 2xera) @r = 1.

Simple eigenvalues A have g\ = a) = 1.

Eigenvalues A\ with g\ < a, are defective

Any A such that >,y 4)9x <7 is defective.
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Similarity and Diagonalizability L02-503

Two square matrices A and B are similar if 3 an invertible S such that
B=S""AS.

(The map A — S~ 'AS is a similarity transform.)
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Similarity and Diagonalizability L02-503

Two square matrices A and B are similar if 3 an invertible S such that
B=S"'AS. j[

(The map A — S~ 'AS is a similarity transform.)

Definition
A square matrix A € C™"*" is diagonalizable if it is similar to a diagonal
matrix.
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Similarity and Diagonalizability L02-503

Two square matrices A and B are similar if 3 an invertible S such that
B=S""AS.

(The map A — S~ 'AS is a similarity transform.)

Definition
A square matrix A € C™"*" is diagonalizable if it is similar to a diagonal
matrix.

Theorem
A square matrix A is diagonalizable iff it is not defective.
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Similarity and Diagonalizability L02-503

Two square matrices A and B are similar if 3 an invertible S such that
B=S""AS.

(The map A — S~ 'AS is a similarity transform.)

Definition
A square matrix A € C™"*" is diagonalizable if it is similar to a diagonal
matrix.

Theorem
A square matrix A is diagonalizable iff it is not defective.

When A is not defective, it is diagonalizable via a matrix whose columns are
comprised of its linearly independent eigenvectors. ‘
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Similarity invariances L02-504

The set of eigenvalues is invariant under a similarity transform.
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Similarity invariances L02-504

The set of eigenvalues is invariant under a similarity transform.

This implies that if A is diagonalizable, then

detAzﬁ)\j, TrA = iAj.

J=1 J=1

The above is actually true for any square matrix A, defective or not.
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Generalizations L02-505

While not all square matrices are diagonalizable...
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Generalizations L02-505

While not all square matrices are diagonalizable...

@ ...all matrices are bidiagonalizable (Jordan normal form)
A<V TV SA@L
T b d.\a@«w, eatneg on main
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Generalizations L02-505

While not all square matrices are diagonalizable...

@ ...all matrices are bidiagonalizable (Jordan normal form)

@ ...all matrices are unitarily triangularizable (Schur decomposition)
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Generalizations L02-505

While not all square matrices are diagonalizable...

@ ...all matrices are bidiagonalizable (Jordan normal form)

@ ...all matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?
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