Eigenvalues and eigenvectors

MATH 6610 Lecture 02

September 2, 2020

Eigenvalues and eigenvectors
Given $\boldsymbol{A} \in \mathbb{C}^{n \times n},(\lambda, \boldsymbol{v}) \in \mathbb{C} \times\left(\mathbb{C}^{n} \backslash\{0\}\right)$ is an eigenvalue-eigenvector pair if

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.
- Simple eigenvalues λ have $g_{\lambda}=a_{\lambda}=1$.

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.
- Simple eigenvalues λ have $g_{\lambda}=a_{\lambda}=1$.
- Eigenvalues λ with $g_{\lambda}<a_{\lambda}$ are defective

Eigenpair properties

There are many properties of eigenvalues and eigenvectors of $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. With $\lambda(\boldsymbol{A})$ the spectrum (collection of eigenvalues) of \boldsymbol{A} :

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an eigenspace E_{λ}.
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its algebraic multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is $\operatorname{dim} E_{\lambda}$.
- $1 \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda} \leqslant \sum_{\lambda \in \lambda(\boldsymbol{A})} a_{\lambda}=n$.
- Simple eigenvalues λ have $g_{\lambda}=a_{\lambda}=1$.
- Eigenvalues λ with $g_{\lambda}<a_{\lambda}$ are defective
- Any \boldsymbol{A} such that $\sum_{\lambda \in \lambda(\boldsymbol{A})} g_{\lambda}<n$ is defective.

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
\boldsymbol{B}=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
B=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)

Definition

A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
B=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)
Definition
A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Theorem
A square matrix \boldsymbol{A} is diagonalizable iff it is not defective.

Similarity and Diagonalizability

Two square matrices \boldsymbol{A} and \boldsymbol{B} are similar if \exists an invertible \boldsymbol{S} such that

$$
B=S^{-1} A S
$$

(The map $\boldsymbol{A} \mapsto \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is a similarity transform.)
Definition
A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

Theorem

A square matrix \boldsymbol{A} is diagonalizable iff it is not defective.
When \boldsymbol{A} is not defective, it is diagonalizable via a matrix whose columns are comprised of its linearly independent eigenvectors.

Similarity invariances

The set of eigenvalues is invariant under a similarity transform.

Similarity invariances

The set of eigenvalues is invariant under a similarity transform.

This implies that if \boldsymbol{A} is diagonalizable, then

$$
\operatorname{det} \boldsymbol{A}=\prod_{j=1}^{n} \lambda_{j}, \quad \operatorname{Tr} \boldsymbol{A}=\sum_{j=1}^{n} \lambda_{j}
$$

The above is actually true for any square matrix \boldsymbol{A}, defective or not.

Generalizations

L02-S05

While not all square matrices are diagonalizable...

Generalizations

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)

Generalizations

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

Generalizations

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?

