L02-S00

Eigenvalues and eigenvectors

MATH 6610 Lecture 02

September 2, 2020

Eigenvalues

Eigenvalues and eigenvectors

Given $A \in \mathbb{C}^{n \times n}$, $(\lambda, v) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$ is an eigenvalue-eigenvector pair if

 $Av = \lambda v.$

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

There are many properties of eigenvalues and eigenvectors of $A \in \mathbb{C}^{n \times n}$. With $\lambda(A)$ the spectrum (collection of eigenvalues) of A:

• All square matrices have exactly n eigenvalues, with some possibly repeated.

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .

L02-S02

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic* multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic* multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

•
$$1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$$

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic* multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .
- $1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$
- Simple eigenvalues λ have $g_{\lambda} = a_{\lambda} = 1$.

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic* multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

•
$$1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$$

- Simple eigenvalues λ have $g_{\lambda} = a_{\lambda} = 1$.
- Eigenvalues λ with $g_{\lambda} < a_{\lambda}$ are *defective*

- All square matrices have exactly n eigenvalues, with some possibly repeated.
- All square matrices have at least 1 eigenvector.
- The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called an *eigenspace* E_{λ} .
- Eigenspaces are invariant subspaces of A.
- The number of times an eigenvalue is repeated a_{λ} is its *algebraic* multiplicity
- The geometric multiplicity g_{λ} of an eigenvalue λ is dim E_{λ} .

•
$$1 \leq \sum_{\lambda \in \lambda(\mathbf{A})} g_{\lambda} \leq \sum_{\lambda \in \lambda(\mathbf{A})} a_{\lambda} = n.$$

- Simple eigenvalues λ have $g_{\lambda} = a_{\lambda} = 1$.
- Eigenvalues λ with $g_{\lambda} < a_{\lambda}$ are *defective*
- Any A such that $\sum_{\lambda \in \lambda(A)} g_{\lambda} < n$ is defective.

Two square matrices A and B are *similar* if \exists an invertible S such that

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Two square matrices A and B are *similar* if \exists an invertible S such that

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Definition

A square matrix $A \in \mathbb{C}^{n \times n}$ is <u>diagonalizable</u> if it is similar to a diagonal matrix.

Two square matrices A and B are *similar* if \exists an invertible S such that

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Definition

A square matrix $A \in \mathbb{C}^{n \times n}$ is <u>diagonalizable</u> if it is similar to a diagonal matrix.

Theorem

A square matrix A is diagonalizable iff it is not defective.

Two square matrices A and B are *similar* if \exists an invertible S such that

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

(The map $A \mapsto S^{-1}AS$ is a similarity transform.)

Definition

A square matrix $A \in \mathbb{C}^{n \times n}$ is <u>diagonalizable</u> if it is similar to a diagonal matrix.

Theorem

A square matrix A is diagonalizable iff it is not defective.

When A is not defective, it is diagonalizable via a matrix whose columns are comprised of its linearly independent eigenvectors.

Similarity invariances

L02-S04

The set of eigenvalues is invariant under a similarity transform.

Similarity invariances

The set of eigenvalues is invariant under a similarity transform.

This implies that if A is diagonalizable, then

$$\det \boldsymbol{A} = \prod_{j=1}^{n} \lambda_j, \qquad \qquad \text{Tr} \boldsymbol{A} = \sum_{j=1}^{n} \lambda_j.$$

The above is actually true for any square matrix A, defective or not.

While not all square matrices are diagonalizable...

L02-S05

While not all square matrices are diagonalizable...

• ...all matrices are bidiagonalizable (Jordan normal form)

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

While not all square matrices are diagonalizable...

- ...all matrices are bidiagonalizable (Jordan normal form)
- ...all matrices are unitarily triangularizable (Schur decomposition)

When are matrices unitarily diagonalizable?