Projection and permutation matrices

MATH 6610 Lecture 01

August 31, 2020
"Fundamental Thm of Linear Algebra"

$$
A \in \mathbb{C}^{m \times n}
$$

"4 fundamental suhsiaris (of A)"
1.) range(A) $\subset \mathbb{C}^{m} \notin$
2.) $\operatorname{ker}(A) \subset \mathbb{C}^{n}$
3.) ronge($\left.A^{*}\right) \subset \mathbb{C}^{n}$
4.) $\operatorname{Ker}\left(A^{*}\right) \subset \mathbb{C}^{m}$

Then: if $r=\operatorname{rank}(A)$,

- dim rangel $A)=\operatorname{dim} \operatorname{range}\left(A^{*}\right)=r$
- $\operatorname{dim} \operatorname{ker}(A)=n-r$
- $\operatorname{dim} \operatorname{ker}\left(A^{*}\right)=m-r$
- $\operatorname{range}(A) \perp \operatorname{ke}\left(A^{*}\right)$
- rangel $\left.A^{*}\right) \perp \operatorname{ker}(A)$

$$
\left(S_{1} \perp S_{2} \text { if }\langle x, y\rangle=0 \quad \forall x \in S_{1}, y \in S_{2}\right)
$$

Projections
With \mathbb{C}^{n} the ambient space, we want to define "projections". Informally, we want projections to

Projections

With \mathbb{C}^{n} the ambient space, we want to define "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel) In order to be well-defined, we need an additional condition.

Definition

A matrix $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix if

1. $\boldsymbol{P} \boldsymbol{v}=\boldsymbol{v}$ for all $\boldsymbol{v} \in \operatorname{range}(\boldsymbol{P})$
2. $\boldsymbol{P} \boldsymbol{v}=\mathbf{0}$ for all $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{P})$
3. $\operatorname{range}(\boldsymbol{P}) \oplus \operatorname{ker}(\boldsymbol{P})=\mathbb{C}^{n}$. \Rightarrow

$$
k \in \operatorname{ker}(\beta) s t . \quad V=r+k .
$$

$$
\begin{aligned}
& \text { Ex. } P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \operatorname{range}(\rho)=\mathbb{C}^{2} \\
& \operatorname{ker}(A)=\{0\} \\
& \left.P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
\operatorname{range}(P)=\operatorname{span}\left\{\binom{1}{0}\right\} \\
\operatorname{ker}(P)=\operatorname{span}\left\{\binom{0}{1}\right.
\end{array}\right\} \\
& P=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \\
& P=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text { is net a projection. }
\end{aligned}
$$

Projections exist and are unique

$$
\{0\}
$$

Does this definition make sense?
Theorem
If \mathcal{R} and \mathcal{K} are \mathbb{C}^{n}-subspaces such that $\mathcal{R} \cap \mathcal{K} \Rightarrow \varnothing$ and
$\operatorname{dim} \mathcal{R}+\operatorname{dim} \mathcal{K}=n$, then \exists ! projection matrix $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ such that $\operatorname{range}(\boldsymbol{P})=\mathcal{R}$ and $\operatorname{ker}(\boldsymbol{P})=\mathcal{K}$
Proof

$$
\left.\begin{array}{l}
\operatorname{dim} R+\operatorname{dim} R=n \\
R \cap K=\{0\}
\end{array}\right\} \Rightarrow R \oplus R=\mathbb{C}^{n}
$$

Existence: Let $r=\operatorname{mim} \quad(0<r<n)$ Let $\left\{a_{j}\right\}_{j=1}^{r}$ be a bass for R.

Let $\left\{b_{j}\right\}_{j=1}^{r}$ be a basis for K^{\perp}

$$
k^{\prime}=\left\{x \in \mathbb{C}^{n} \mid\langle x, y\}=0\right.
$$

$$
\text { Construct } \begin{gathered}
A=\left(\begin{array}{cc}
1 & 1 \\
a_{1} & \cdots \\
1 & a_{r} \\
1 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 1 \\
b_{1} & \cdots \\
1 & b_{r} \\
1 & 1
\end{array}\right) . \\
A \in C^{n \times r}
\end{gathered}
$$

$$
\forall y \in k\}
$$

Define $P=A(\underbrace{\left.B^{*} A\right)^{-1}}_{r \times r} B^{*} \#$
if $B^{*} A$ is invertible:

- if $x \in K$, then $B^{*} x=0 \Rightarrow P_{x}=0$
- if $x \in R$, then $\exists y \in C^{r} s, t \cdot x=A y$

$$
P_{x}=A\left(B^{*} A\right)^{-1} B^{x} A_{y}
$$

$$
=A_{y}=x
$$

is $B^{*} A$ invertible?

$$
\begin{aligned}
&- \text { suppose } \exists x \in \mathbb{L}^{r} \text { st. } B^{*} A_{x}=0 . \\
& \Rightarrow A_{x} \in K \\
& \text { Bur also: } A_{x} \in R(\text { range }(A)=R)
\end{aligned}
$$

Ie. $A x \in R \cap K$

$$
\Rightarrow A_{x}=0 .
$$

But since columns of A are a
basis for $R \Rightarrow A_{x}=0 \Rightarrow x=0$.

- the only solution fo $B^{*} A x=0$ is $x=0$.

$$
\Rightarrow B^{*} A \text { invertible. }
$$

$\Rightarrow P$ is a projection.
uniqueness "Let P_{1} and P_{2} be projections with range R and la rel K.

$$
P_{1}=P_{2} \Longleftrightarrow\left(R_{1}-P_{2}\right) v=0 \quad \forall v \in \mathbb{C}^{n} .
$$

Let $v=v_{R}+v_{k}, \quad v_{R} \in R . \quad v_{k} \in \mathcal{K}$.

$$
\begin{aligned}
\left(P_{1}-P_{2}\right) v=\left(P_{1}-P_{2}\right)\left(v_{R}+v_{k}\right) & =\left(P_{1}-P_{2}\right) v_{k} \\
& =v_{R}-v_{R}=0 .
\end{aligned}
$$

$$
\Rightarrow \text { uniqueness }
$$

Orthogonal projections
Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

$$
\begin{aligned}
& \text { If } p \text { is a projection } \\
& \Rightarrow\|P\|_{2}=\sup \\
& =\sup _{x \in \mathbb{C}^{n} \backslash\{0\}} \frac{\|P\|_{2}}{\|x\|_{2}} \geq \sup _{x \in \operatorname{rangel} \mid p \backslash\{0\}} \frac{\| \|_{x} \|_{2}}{\|x\|_{2}} \\
& =1 \\
& \xrightarrow[0]{\infty} x \cdots \operatorname{ker}(P) \operatorname{range}(P)
\end{aligned}
$$

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along (range $\boldsymbol{P})^{\perp}$ is a norm non-expansive operation, ie.,

$$
\begin{aligned}
& \operatorname{ker}(\boldsymbol{P})=\operatorname{range}(\boldsymbol{P})^{\perp} \Longrightarrow \quad \Longrightarrow \quad\|\boldsymbol{P}\|_{2} \leqslant\|\boldsymbol{v}\|_{2} . \\
& \|P\|_{2}=1 \quad \text { Pythagorean thu. }
\end{aligned}
$$

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along (range $\boldsymbol{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$
\operatorname{ker}(\boldsymbol{P})=\operatorname{range}(\boldsymbol{P})^{\perp} \quad \Longrightarrow \quad\|\boldsymbol{P} \boldsymbol{v}\|_{2} \leqslant\|\boldsymbol{v}\|_{2} .
$$

Projection matrices \boldsymbol{P} satisfying $\operatorname{ker}(\boldsymbol{P})=(\text { range } \boldsymbol{P})^{\perp}$ are orthogonal projections.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}=\boldsymbol{A}^{2}$.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}=\boldsymbol{A}^{2}$.
Theorem
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent. $\left(\rho=\rho^{2}\right)$
Proof: Suppose P is a porjection.

$$
\text { Let } v \in \mathbb{C}^{n} \text {. Then } \begin{aligned}
v= & V_{R}+V_{j} \\
& \underset{r a n g e}{ }(P) \operatorname{ker}(P)
\end{aligned}
$$

$$
\begin{aligned}
\left(P-P^{2}\right) V & =\left(P-P^{2}\right)\left(v_{R}+v_{R}\right) \\
& =\left(P-P^{2}\right) V_{R}=v_{R}-P v_{R}=v_{R}-v_{R}=0 . \\
\Rightarrow P & =P^{2}
\end{aligned}
$$

Now supplies that $P=P^{2}$.
Let $v \in \mathbb{C}$ n.

$$
\begin{aligned}
& v \in \mathbb{C}^{n} . \quad \operatorname{ker}(P) \quad\left(\begin{array}{l}
P(I-P) v \\
v=\underbrace{P}_{\text {range }}(P)
\end{array}=\left(P-P^{2}\right) v=0\right)
\end{aligned}
$$

already know. dim range $(P)+4 i m k e r(P)=n$. \Rightarrow range $|P| \oplus \operatorname{ker}(P)=\mathbb{C}^{n}$.
exercise: show $P V=V \forall V \in$ range (P).

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}=\boldsymbol{A}^{2}$.
Theorem
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.
This motivates the more common definition of a projection matrix:
Definition
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix if $\boldsymbol{P}=\boldsymbol{P}^{2}$.

Orthogonal projectors
There is also an algebraically convenient characterization of orthogonal projection matrices.
Theorem Let $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian

$$
\begin{gathered}
P=P^{*} \text { projector } \\
P \text { is orthogonal if range }(P) \perp \operatorname{ker}(P) \text {. }
\end{gathered}
$$

Proof: Assume $P=P^{*}$.
Two ways (i) range (P) $\perp \operatorname{ker}\left(P^{*}\right)(F T$ of $L A$)

$$
\Rightarrow \operatorname{range}(P) \perp \operatorname{ker}(P) \text {. }
$$

(ii) Let x Grange (P)
yeker (P)

$$
\begin{aligned}
\langle x, y\rangle=\langle P x, y\rangle & =\left\langle P x,(I-P)_{y}\right\rangle \\
& =\left\langle x, P^{*}(I-P)_{y}\right\rangle \\
& =\langle x, \underbrace{P^{*}-P^{*} P}_{P-P^{2}=0}) y\rangle \\
& =0 .
\end{aligned}
$$

Now assume $\operatorname{range}(P) \perp \operatorname{ker}(P)$
Show $\forall x, y \in \mathbb{C}^{n}:\left\langle P_{x, y}\right\rangle=\left\langle P_{x, y}^{*}\right\rangle$

$$
\begin{aligned}
& \left.\begin{array}{l}
x=x_{R}+x_{k} \\
y=y_{R}+y_{k}
\end{array}\right\} \begin{array}{l}
x_{R} y_{R} \in \operatorname{range}(p) \\
x_{k}, y_{k} \in \operatorname{ker}(p)
\end{array} \\
& \left.\langle p x, y\rangle=\left\langle x_{R}, y_{R}+y_{k}\right\rangle=x_{R}, y_{R}\right\rangle \\
& \left\langle p^{*} x, y\right\rangle=\left\langle x, p_{y}\right\rangle=\left\langle x_{R} y_{R}\right\rangle \\
& \Rightarrow P=p^{*} \quad
\end{aligned}
$$

Orthogonal projectors
There is also an algebraically convenient characterization of orthogonal projection matrices.
Theorem
Let $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.
This motivates the more common definition of an orthogonal projection matrix:
Definition
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is an orthogonal projection matrix if $\boldsymbol{P}=\boldsymbol{P}^{2}$ and $\boldsymbol{P}=\boldsymbol{P}^{*}$.

Note: if D is an orthigmal projector, then

$$
\operatorname{ker}(P)^{\perp}=\operatorname{range}(P)
$$

If g_{1} io or is an archon normal basis for range (P)....
then

$$
P=A\left(B^{*} A\right)^{-1} B^{*}, \quad \begin{aligned}
& \operatorname{range}(A)=\operatorname{range}(P) \\
& \\
& \operatorname{rarge}(B)=\operatorname{ker}(P)^{+} .
\end{aligned}
$$

choose $A=B=\left[\begin{array}{cc}1 & 1 \\ q_{1} & \cdots \\ 1 & 1\end{array}\right]=Q$.

$$
\begin{aligned}
& B^{*} A=I_{r r r} \\
& \Rightarrow \underbrace{P=Q Q^{*}} \\
& P x=\underbrace{Q^{*} x}_{\begin{array}{c}
\text { scallar priections of } x \text { in } \\
\text { directins }
\end{array} Q_{1} \cdots q_{r} .}
\end{aligned}
$$

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}, \sigma:[n] \rightarrow[n]$ is a permutation if it is a bijection.

$$
[n]=\{1,2, \ldots n\}
$$

Permutation

A second class of matrices well consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}, \sigma:[n] \rightarrow[n]$ is a permutation if it is a bijection.
Definition
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a permutation matrix if there is a permutation map σ on $[n]$ such that $\boldsymbol{P} e_{j}=\boldsymbol{e}_{\sigma(j)}$ for all $j \in[n]$.

$$
e_{j}=(0,0 \ldots 0,1,0, \ldots 0,0)^{*}
$$

