L01-S00

Projection and permutation matrices

MATH 6610 Lecture 01

August 31, 2020

Projections and permutations

"Fundamental Thm. of Linear Algebra"

$$A \in C^{M \times N}$$

"4 fundamental subspaces (of A)"
1.) range(A) $\subset C^{m}$
2.) ker(A) $\subset C^{m}$
3.) ronge(A*) $\subset C^{m}$
4.) Ker(A*) $\subset C^{m}$
4.) Ker(A*) $\subset C^{m}$
5.] ronge(A) $= \dim range(A*) = r$
• dim ker(A) $= n - r$
• dim ker(A) $= m - r$
• dim ker(A*) $= m - r$
• range(A) $\perp ker(A*)$
• range(A) $\perp ker(A*)$

Projections

With \mathbb{C}^n the ambient space, we want to define "projections". Informally, we want projections to

- Act like the identity on some subspace (the range) (R)
 - Annihilate components in another subspace (the kernel) (

Proj

ΞX

=0

L01-S01

Projections

With \mathbb{C}^n the ambient space, we want to define ''projections''. Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

Definition A matrix $P \in \mathbb{C}^{n \times n}$ is a projection matrix if (!) 1. Pv = v for all $v \in \operatorname{range}(P)$ 2. Pv = 0 for all $v \in \ker(P)$ 3. $\operatorname{range}(P) \oplus \ker(P) = \mathbb{C}^{n}$. $\forall v \in \mathbb{C}^{n}$, $\exists r \in \operatorname{range}(P)$, $k \in \ker(P)$ S.t. $v = r \neq k$.

$$\overline{E} \times P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad range (P) = C^{2} \\ ker(P) = SO \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad range(P) = span \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \} \\ ker(P) = span \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$$

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
is not a projection.

Projections exist and are unique

Does this definition make sense?

Theorem

If \mathcal{R} and \mathcal{K} are \mathbb{C}^n -subspaces such that $\mathcal{R} \cap \mathcal{K} \xrightarrow{} \mathcal{K}$ and $\dim \mathcal{R} + \dim \mathcal{K} = n$, then \exists ! projection matrix $\mathbf{P} \in \mathbb{C}^{n \times n}$ such that $\operatorname{range}(\mathbf{P}) = \mathcal{R}$ and $\ker(\mathbf{P}) = \mathcal{K}$.

Proof:
$$\dim R + \dim R = n \} \implies R \oplus R = C^n$$

 $R \cap R = \{0\}$

Existence: Let
$$r = \operatorname{otim} R$$
. $(O < r < n)$
Let $\{o_j\}_{j=1}^r$ be a basis for R .

Let
$$\$b_{3}J_{j=1}^{r}$$
 be a basis for X^{\perp}
 $X^{\perp} = \$ x \in \mathbb{C}^{n} | \langle x, y \rangle = 0$
 $V y \in X \rbrace$.
Construct $A = (a, -a_{r})$, $B = (b, -b_{r})$.
 $A, B \in \mathbb{C}^{n \times r}$
Define $P = A(B^{*}A)^{-1}B^{*}$ A
 $r \times r$
if $B^{*}A$ is invertible:
 $-if x \in K$, then $B^{*}x = 0 \Rightarrow Px = 0$
 $-if x \in R$, then $\exists y \in \mathbb{C}$ s.t. $x = Ay$
 $Px = A(B^{*}A)^{-1}B^{*}Ay$
 $= Ay = x$
is $B^{*}A$ invertible?
 $-suppose \exists x \in \mathbb{C}^{r} \lesssim t$. $B^{*}Ax = 0$.
 $\Rightarrow A_{X} \in X$
But also $\exists A_{X} \in \mathbb{R}$ (range $(A) = \mathbb{R}$)

I.e. AXERAX $\Rightarrow A_{v} = 0$ But since columns of A are a bacis for R = A = 0 = X = 0- the only solution to $B^*Ax=0$ is x=0. => B*A invertible. => P is a projection. Uniqueness: Let P, and P2 be projections with range R and kernel K. $P_1 = P_2 \iff (R_1 - P_2)v = 0 \quad \forall v \in \mathbb{C}^n$ Let V= VR+VK, VRER. VKEK. $(P_1 - P_2)V = (P_1 - P_2)(V_R + V_{1k}) = (P_1 - P_2)V_R$ $= V_{R} - V_{R} = 0.$ => uniqueness

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

If pris a projection

$$= \frac{11P \times 11_2}{11P \times 11_2} = \sup_{\substack{x \in C^n \setminus SO \\ x \in C^n \setminus SO \\ x \in C^n \setminus SO \\ x \in VargelP}$$

$$= 1$$

$$= 1$$

$$= 1$$

-

L01-S03

Orthogonal projections

L01-S03

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along $(range \mathbf{P})^{\perp}$ is a norm non-expansive operation, i.e.,

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along $(range \mathbf{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$\ker(\boldsymbol{P}) = \operatorname{range}(\boldsymbol{P})^{\perp} \implies \|\boldsymbol{P}\boldsymbol{v}\|_2 \leqslant \|\boldsymbol{v}\|_2.$$

Projection matrices P satisfying $ker(P) = (range P)^{\perp}$ are *orthogonal* projections.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is *idempotent* if $A = A^2$.

L01-S04

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is *idempotent* if $A = A^2$.

Theorem $P \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent. $(P = P^2)$ Proof: Suppose P is a projection, Let $v \in \mathbb{C}^n$. Then $v = v_B + v_K$ range(P) ker(P)

101-S04

 $(p - p^2)_V = (p - p^2) (v_R + v_R)$ $= (p - p^2)_{V_{12}} = v_{12} - pv_{12} = v_{12} - 0.$ $\equiv p_z p_z^2$ Now suppose that P=P? Let $v \in \mathbb{C}^{n}$. $v = Pv + (I - P)v = (P - P^{2})v = 0$ range (p) already Know: dim range (P) form ker (P) = n. => range (P) (Kerlp) = Cn. exercise: show PVEV & verange (P). []

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is *idempotent* if $A = A^2$.

Theorem

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.

This motivates the more common definition of a projection matrix:

Definition

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix if $P = P^2$.

101-S04

Orthogonal projectors

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

(ii) Let
$$x \in range(P)$$

 $y \in kor(P)$
 $\langle \chi, y \rangle = \langle P\chi, y \rangle = \langle P\chi, (I - P)y \rangle$
 $= \langle \chi, P^{\star}(I - P)y \rangle$
 $= \langle \chi, (P^{\star} - P^{\star}P)y \rangle$
 $P - P^{2} = 0.$

$$= O.$$
Now assume range (P) $\perp k\sigma(P)$.
Show $\forall x_{i}y \in \mathbb{C}^{n} : \langle Px_{i}y \rangle = \langle P^{*}_{x_{i}y} \rangle$
 $x = x_{R} + x_{X}$
 $y = y_{R} + y_{K}$
 $X_{R_{i}} y_{R} \in range(P)$
 $\chi = y_{R} + y_{K}$
 $X_{R_{i}} y_{R} \in lor(P).$
 $\langle Px_{i}y \rangle = \langle x_{R_{i}} y_{R} + y_{K} \rangle = \langle x_{R_{i}} y_{R} \rangle$
 $\langle P^{*}_{x_{i}y} \rangle = \langle x_{i} Py \rangle = \langle x_{R} y_{R} \rangle$
 $= \gamma P = P^{*}$ D.

Orthogonal projectors

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

This motivates the more common definition of an orthogonal projection matrix:

Definition

 $P \in \mathbb{C}^{n imes n}$ is an orthogonal projection matrix if $P = P^2$ and $P = P^*$.

MATH 6610-001 – U. Utah

Projections and permutations

then $P = A(B^*A)^{-1}B^*$, range |A| = range(P)range $(B) = ker(P)^+$. choose $A=B=\begin{bmatrix} g, & -g_r \end{bmatrix}=Q$. $B^{*}A = I_{rxr.}$ = $P = QQ^{*}$ $P_{X} = QQ^{*}x$ scalar projections of x in directions $g_{1} - g_{r}$.

L01-S06

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\sigma : [n] \rightarrow [n]$ is a permutation if it is a bijection.

$$[n] = \{1, 2, ..., n\}$$

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\sigma : [n] \rightarrow [n]$ is a permutation if it is a bijection.

Definition

 $P \in \mathbb{C}^{n \times n}$ is a permutation matrix if there is a permutation map σ on [n] such that $Pe_j = e_{\sigma(j)}$ for all $j \in [n]$.

$$e_{j} = (0, 0 - 0, 1, 0, - 0, 0)^{*}$$

 7
 $j \neq h$ element.