Projection and permutation matrices

MATH 6610 Lecture 01

August 31, 2020

Projections

With \mathbb{C}^n the ambient space, we want to define "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

Projections

With \mathbb{C}^n the ambient space, we want to define "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

Definition

A matrix $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix if

- 1. Pv = v for all $v \in \text{range}(P)$
- 2. Pv = 0 for all $v \in \ker(P)$
- 3. range(\mathbf{P}) \oplus ker(\mathbf{P}) = \mathbb{C}^n .

Projections exist and are unique

Does this definition make sense?

Theorem

If \mathcal{R} and \mathcal{K} are \mathbb{C}^n -subspaces such that $\mathcal{R} \cap \mathcal{K} = \emptyset$ and $\dim \mathcal{R} + \dim \mathcal{K} = n$, then \exists ! projection matrix $\mathbf{P} \in \mathbb{C}^{n \times n}$ such that $\operatorname{range}(\mathbf{P}) = \mathcal{R}$ and $\ker(\mathbf{P}) = \mathcal{K}$.

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along $(\mathrm{range} m{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$\ker(\boldsymbol{P}) = \operatorname{range}(\boldsymbol{P})^{\perp} \Longrightarrow \|\boldsymbol{P}\boldsymbol{v}\|_{2} \leqslant \|\boldsymbol{v}\|_{2}.$$

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along $(\mathrm{range} \boldsymbol{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$\ker(\mathbf{P}) = \operatorname{range}(\mathbf{P})^{\perp} \implies \|\mathbf{P}\mathbf{v}\|_{2} \leqslant \|\mathbf{v}\|_{2}.$$

Projection matrices P satisfying $\ker(P) = (\operatorname{range} P)^{\perp}$ are orthogonal projections.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if $A = A^2$.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if $A = A^2$.

Theorem

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if $A = A^2$.

Theorem

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.

This motivates the more common definition of a projection matrix:

Definition

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix if $P = P^2$.

Orthogonal projectors

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

Orthogonal projectors

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

This motivates the more common definition of an orthogonal projection matrix:

Definition

 $m{P} \in \mathbb{C}^{n \times n}$ is an orthogonal projection matrix if $m{P} = m{P}^2$ and $m{P} = m{P}^*$.

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\sigma : [n] \to [n]$ is a permutation if it is a bijection.

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\sigma : [n] \to [n]$ is a permutation if it is a bijection.

Definition

 $P \in \mathbb{C}^{n \times n}$ is a permutation matrix if there is a permutation map σ on [n] such that $Pe_j = e_{\sigma(j)}$ for all $j \in [n]$.