Projection and permutation matrices

MATH 6610 Lecture 01

August 31, 2020

Projections

With \mathbb{C}^{n} the ambient space, we want to define "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

Projections

With \mathbb{C}^{n} the ambient space, we want to define "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

Definition

A matrix $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix if

1. $\boldsymbol{P} \boldsymbol{v}=\boldsymbol{v}$ for all $\boldsymbol{v} \in \operatorname{range}(\boldsymbol{P})$
2. $\boldsymbol{P} \boldsymbol{v}=\mathbf{0}$ for all $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{P})$
3. $\operatorname{range}(\boldsymbol{P}) \oplus \operatorname{ker}(\boldsymbol{P})=\mathbb{C}^{n}$.

Projections exist and are unique

Does this definition make sense?
Theorem
If \mathcal{R} and \mathcal{K} are \mathbb{C}^{n}-subspaces such that $\mathcal{R} \cap \mathcal{K}=\varnothing$ and
$\operatorname{dim} \mathcal{R}+\operatorname{dim} \mathcal{K}=n$, then \exists ! projection matrix $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ such that range $(\boldsymbol{P})=\mathcal{R}$ and $\operatorname{ker}(\boldsymbol{P})=\mathcal{K}$.

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along (range $\boldsymbol{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$
\operatorname{ker}(\boldsymbol{P})=\operatorname{range}(\boldsymbol{P})^{\perp} \quad \Longrightarrow \quad\|\boldsymbol{P} \boldsymbol{v}\|_{2} \leqslant\|\boldsymbol{v}\|_{2} .
$$

Orthogonal projections

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along (range $\boldsymbol{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$
\operatorname{ker}(\boldsymbol{P})=\operatorname{range}(\boldsymbol{P})^{\perp} \quad \Longrightarrow \quad\|\boldsymbol{P} \boldsymbol{v}\|_{2} \leqslant\|\boldsymbol{v}\|_{2} .
$$

Projection matrices \boldsymbol{P} satisfying $\operatorname{ker}(\boldsymbol{P})=(\text { range } \boldsymbol{P})^{\perp}$ are orthogonal projections.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}=\boldsymbol{A}^{2}$.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}=\boldsymbol{A}^{2}$.
Theorem
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.

Projection matrices

There is a more algebraically convenient characterization of projection matrices.

A square matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}=\boldsymbol{A}^{2}$.
Theorem
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.
This motivates the more common definition of a projection matrix:
Definition
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a projection matrix if $\boldsymbol{P}=\boldsymbol{P}^{2}$.

Orthogonal projectors

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

Orthogonal projectors

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $\boldsymbol{P} \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.
This motivates the more common definition of an orthogonal projection matrix:

Definition
$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is an orthogonal projection matrix if $\boldsymbol{P}=\boldsymbol{P}^{2}$ and $\boldsymbol{P}=\boldsymbol{P}^{*}$.

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}, \sigma:[n] \rightarrow[n]$ is a permutation if it is a bijection.

Permutation

A second class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}, \sigma:[n] \rightarrow[n]$ is a permutation if it is a bijection.

Definition

$\boldsymbol{P} \in \mathbb{C}^{n \times n}$ is a permutation matrix if there is a permutation map σ on $[n]$ such that $\boldsymbol{P} e_{j}=\boldsymbol{e}_{\sigma(j)}$ for all $j \in[n]$.

