Linear algebra preliminaries

MATH 6610 Lecture 00

August 28, 2020
Trefethen \& Bay Lectures 1-3.

Notation
We'll use some standard math notation

- $\mathbb{C}, \mathbb{R}, \mathbb{N}, \mathbb{Z}$ (integers)
- \in, \forall, \exists !
- $\{x \in \mathbb{C} \mid \operatorname{Im}\{x\} \in \mathbb{N}\}$
- $z=x+i y$ for $x, y \in \mathbb{R} \Longrightarrow \bar{z}=z^{*}:=x-i y$

Vectors, matrices, etc:

- $\boldsymbol{u} \in \mathbb{C}^{n}$

$$
(\underline{u}, \stackrel{A}{=})
$$

- $\boldsymbol{A} \in \mathbb{C}^{m \times n}$
- linear independence
- rank

$$
\begin{aligned}
& \operatorname{rank}(A)=\operatorname{colrank}(A)=\# \text { of } L I \text { columns } \\
&=\operatorname{rowrank}(A)=\# \text { of } L I \text { rows } \\
& \rightarrow A^{*} \in \mathbb{C}^{n \times m}
\end{aligned}
$$

- transpose
- determinant
- matrix inverse

$$
\begin{aligned}
& A^{*} \in \mathbb{C}^{n \times m} \\
& \left(A^{*}\right)_{i, j}=\left(A_{j, i}\right)^{*}
\end{aligned}
$$

Hilbertian structure
\mathbb{C}^{n} endowed with the standard inner product is a Hilbert space. If $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^{n}$,

- $\langle\boldsymbol{u}, \boldsymbol{v}\rangle,\|\boldsymbol{u}\|$
- $\angle(\boldsymbol{u}, \boldsymbol{v})$
- $\boldsymbol{u} \perp \boldsymbol{v}$
- $\operatorname{Proj}_{v} u$
- orthogonal and orthonormal sets

$$
\begin{aligned}
& \langle u, v\rangle=\sum_{j=1}^{n} u_{j} v_{j}^{*},\|u\|^{2}:=\langle u, u\rangle \\
& \left\langle(u, v)=\arccos \left(\frac{\langle u, v\rangle}{\|u\|\|\cdot\| v \|}\right), \arccos :[-1,1] \Rightarrow[0, \pi]\right. \\
& u \perp v \Leftrightarrow\langle u, v\rangle=0 \quad(u, v \neq 0)
\end{aligned}
$$

$$
\operatorname{Proju} u \quad \operatorname{Proj}_{v} u=\frac{\underbrace{\langle u, v\rangle}_{v} \frac{v}{\|v\|} \quad(v \neq 0)]}{} \begin{gathered}
\text { "amount of of } \\
\text { u pointing in } \\
v \text { direction }
\end{gathered}
$$

$\left\{u_{j}\right\}_{j=1}^{m} c \mathbb{C}^{n}$ are orthogonal if $\left\langle u_{j}, u_{k}\right\rangle=0$ if $j \neq k$ " orthonormal if $\left\langle w_{j}, y_{k}\right\rangle=\delta_{j, k}=\left\{\begin{array}{l}0, j \neq k \\ 1, j=k\end{array}\right.$

Unitary and orthogonal matrices
We'll frequently let $\boldsymbol{U} \in \mathbb{C}^{n \times n}$ denote a unitary/orthogonal matrix.
Def: $U \in \mathbb{C}^{n \times n}$ is unitary if its columns are orthonormal. $\left(U \in \mathbb{R}^{n \times n}\right.$ is unitary, it's sometimes called orthogonal)

$$
U^{*} U=I_{n \times n} \Longrightarrow U^{-1}=U^{*} \Rightarrow U U^{*}=I_{n \times n}
$$

\Rightarrow rows of U are orthonormal.
Ex. $\left\|U_{x}\right\|=\|x\| \quad(H W)$

Vector norms
A map $\|\cdot\|: \mathbb{C}^{n} \rightarrow \mathbb{R}$ is a norm if it satisfies all the following properties:

- $\|\boldsymbol{x}\| \geqslant 0 \quad \forall \boldsymbol{x} \in \mathbb{C}^{n}$
- $\|\boldsymbol{x}\|=0$ iff $\boldsymbol{x}=\mathbf{0}$
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leqslant\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^{n}$ ("triangle mequality")
- $\|c \boldsymbol{x}\|=|c|\|\boldsymbol{x}\| \forall \boldsymbol{x} \in \mathbb{C}^{n}, c \in \mathbb{C}$.

For example there are vector p-norms.
(Above II. II does not necessarily mean Euclidean noun)
Ex (p-norms)

$$
\begin{aligned}
&(p-n \text { rms) } \\
& x \in C^{n},\|x\|_{p}:=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}, \quad \mid \leq p<\infty \\
&\|x\|_{\infty}:=\max _{1 \leq j \leq n}\left|x_{j}\right|
\end{aligned}
$$

Euclidean norm: $p=2$

There are many properties of ($p-$) norms:
Ex. (Caychy-Schwarz)

$$
x, y \in \mathbb{C}^{n} \quad|\langle x, y\rangle| \leq\|x\|_{2}\|y\|_{2}
$$

Ex. (Holder inequalities)
Let $p, q \in(1, \infty)$ be "conjugate exponents", i.e.

$$
\frac{1}{p}+\frac{1}{b}=1
$$

Then: $|\langle x, y\rangle| \leq\|x\|_{p}\left\|_{y}\right\|_{q}$

$$
(p=q=2 \Rightarrow \text { (auchy-Schwarz) }
$$

How "different" are these norms?
Theorem ("All finte-dimensional norms are equivalent") Given $\|\cdot\|_{a,}\|\cdot\|_{b}: \mathbb{C}^{n} \rightarrow[0, \infty)$ that are norms, then $\exists c_{1} C \in(0, \infty)$ such that

$$
c\|x\|_{a} \leq\|x\|_{b} \leq C\|x\|_{a} \quad \forall x \in \mathbb{C}^{n}
$$

(I.e, C, C depend $n,\|\cdot\|_{a}, l-\|_{b}$, butane independent of x).

Matrix norms
Norms on matrices can be induced by vector norms, but there are also non-induced norms.
Def-: The induced ρ norm on matrices $A \in \mathbb{C}^{n \times n}$ is

Note: Supremum is ackuevoble in \mathbb{C}^{n}

Def: Given $A \in \mathbb{C}^{m \times n}$, and given $p, q \in[1, \infty]$, then

$$
\left.\left.\|A\|_{p, q}=\sup _{\substack{x \in q_{n}^{n} \\ x \neq 0}} \frac{\|A x\|_{p}}{\|x\|_{q}} \quad \text { "induced }(p, q) \text { norm } "\right)\right\}
$$

Ex. $A \in \mathbb{C}^{m \times n}, U \in \mathbb{C}^{m \times m}$ is unitary.
Then $\|U A\|_{2}=\|A\|_{2}$
Induced norms are "sub-multiplicative", ie, if $A, B \in \mathbb{C}^{n+n}$, then $\|A B\| \leq\|A\| \cdot\|B\|$ if $U \cdot \|$ is an induce le norm.

There are non-induced norms. The most useful example is the Frobenius norm: $A \in \mathbb{C}^{m \times n}$

$$
\|A\|_{F}^{2}:=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}
$$

Ie, this norm is "entrywise",

$$
\begin{aligned}
& Q:\|A\|_{F} \stackrel{?}{\operatorname{Tr}(A)} \\
&\|A\|_{F}^{2}=\operatorname{Tr}\left(A^{*} A\right)
\end{aligned}
$$

$\operatorname{norm}(A)$ (indued 2-nosm)
\rightarrow answer

