Linear algebra preliminaries

MATH 6610 Lecture 00

August 28, 2020

Notation

We'll use some standard math notation

- $\mathbb{C}, \mathbb{R}, \mathbb{N}$
- \in, \forall, \exists !
- $\{x \in \mathbb{C} \mid \operatorname{Im}\{x\} \in \mathbb{N}\}$
- $z=x+i y$ for $x, y \in \mathbb{R} \Longrightarrow \bar{z}=z^{*}:=x-i y$

Vectors, matrices, etc:

- $\boldsymbol{u} \in \mathbb{C}^{n}$
- $\boldsymbol{A} \in \mathbb{C}^{m \times n}$
- linear independence
- rank
- transpose
- determinant
- matrix inverse

Hilbertian structure

\mathbb{C} endowed with the standard inner product is a Hilbert space. If $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^{n}$,

- $\langle\boldsymbol{u}, \boldsymbol{v}\rangle,\|\boldsymbol{u}\|$
- $\angle(\boldsymbol{u}, \boldsymbol{v})$
- $\boldsymbol{u} \perp \boldsymbol{v}$
- $\operatorname{Proj}_{v} u$
- orthogonal and orthonormal sets

Unitary and orthogonal matrices

We'll frequently let $\boldsymbol{U} \in \mathbb{C}^{n \times n}$ denote a unitary/orthogonal matrix.

Vector norms

A map $\|\cdot\|: \mathbb{C}^{n} \rightarrow \mathbb{R}$ is a norm if it satisfies all the following properties:

- $\|\boldsymbol{x}\| \geqslant 0 \quad \forall \boldsymbol{x} \in \mathbb{C}^{n}$
- $\|\boldsymbol{x}\|=0$ iff $\boldsymbol{x}=\mathbf{0}$
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leqslant\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^{n}$
- $\|c \boldsymbol{x}\|=|c|\|\boldsymbol{x}\| \forall \boldsymbol{x} \in \mathbb{C}^{n}, c \in \mathbb{C}$.

For example there are vector p-norms.

Matrix norms

Norms on matrices can be induced by vector norms, but there are also non-induced norms.

