
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MATH 6610 – Section 001 – Fall 2020
Homework 4

Approximation techniques

Due Thursday, December 3, 2020 by 11:59pm MT

Submission instructions:
Create a private repository on github.com named math6610-homework-4. Add your LATEX
source files and your Matlab/Python code and push to Github. To submit: grant me (username
akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not look at your
submission until the due date+time specified above. If you choose this route, I will only grade
the assignment associated with the last commit before the due date.
All commits timestamped after the due date+time will be ignored
All work in commits before the final valid timestamped commit will be ignored.

Problem assignment:

P1. Let w(x) be a strictly positive, bounded weight function on an interval I on the real line.
(I may be unbounded if w decays at infinity sufficiently quickly.) Given x1, . . . , xN ∈ I,
let IN be the associated degree-(N − 1) polynomial interpolation operator, i.e., if f is
continuous, then INf is degree-(N − 1) polynomial that interpolates f at the xj . Define

Cw(I) =
{
f : I → R

∣∣ ‖f‖w,∞ <∞
}
, ‖f‖w,∞ := sup

x∈I
w(x)|f(x)|.

Prove the following weighted version of Lebesgue’s Lemma,

‖f − INf‖w,∞ ≤ [1 + Λw] inf
p∈PN−1

‖f − p‖w,∞ ,

where PN−1 is the space of polynomials of degree at most N − 1, and

Λw = sup
x∈I

w(x)

N∑
j=1

|`j(x)|
w(xj)

,

where `j ∈ PN−1 is the cardinal Lagrange interpolant, `j(xi) = δi,j .

P2. Define the standard L2 Sobolev spaces of periodic functions on [0, 2π]: Given a non-
negative integer s,

Hs
p([0, 2π]) =

{
f : [0, 2π]→ C

∣∣ f (r)(0) = f (r)(2π) for r = 0, . . . s− 1, and ‖f‖Hs
p
<∞

}
,

where f (r) denotes the rth derivative of f (with f (0) ≡ f), and

‖f‖2Hs
p

=

s∑
j=0

∥∥∥f (j)∥∥∥2
L2

=

s∑
j=0

∫ 2π

0

∣∣∣f (j)(x)
∣∣∣2 dx.
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Let fn denote the frequency-n Fourier Series approximation to f on [0, 2π], i.e.,

fn(x) =
∑
|j|≤n

f̂j(x)
1√
2π
eijx.

Prove that,

‖f − fn‖Hj
p
≤ nj−s ‖f‖Hs

p
, 0 ≤ j ≤ s (1)

P3. (Discrete Fourier Transforms) Given f ∈ L2([0, 2π]), consider the problem of approxi-
mating f by a frequency-n Fourier series:

f(θ) ≈ p(θ) =
∑
|j|≤n

cjφj(θ), φj(θ) =
1√

2n+ 1
eijθ.

In this problem, we’ll consider interpolative approximations with the equidistant nodal
set on [0, 2π],

θk =
2πk

2n+ 1
, k = 0, . . . , 2n.

The interpolation conditions on these 2n + 1 points furnish constraints for the 2n + 1
coefficients cj defined by the linear system:

V c = f, (f)j = f(θj), (c)j = cj .

The map defined by matrix V is called the Discrete Fourier Transform (DFT).

(a) Show that V is unitary, hence the DFT is a unitary operator.

(b) Assume that ‖f‖∞ := supθ∈[0,2π] |f(θ)| is finite. Define the interpolation operator In
as the map f 7→ p, with f and p as given above, where both are treated as elements
of L2([0, 2π]). Derive a bound for the norm of this operator:

‖In‖L2([0,2π])7→L2([0,2π]) ,

which may be in terms of n and ‖f‖∞, and ‖f‖L2 .

(c) Assume that f ∈ Hs
p([0, 2π]) for some s > 0. Prove a variant of Lebesgue’s Lemma

using a combination of (i) the interpolation operator norm above and (ii) the bound
for L2-optimal Fourier series approximation (1). I.e., provide a bound for

‖f − Inf‖L2 ,

where the bound depends only on norms of f , and on n, and s.

P4. (Non-polynomial interpolation) Let x1, . . . , xn+1 be distinct real-valued nodes on a com-
pact interval [a, b], and let f be a given continuous function. Prove that the interpolation
problem on these nodes that seeks a function p from the space

p ∈ span{1, ex, e2x, . . . , enx},

is unisolvent. (Hint: this problem can be reduced to polynomial interpolation.)
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P5. This problem concerns interpolation, quadrature formulas, and differentiation formulas.
All these problems should be done without a computer.

(a) Let h(x) = x3 − 1. Compute the degree-3 polynomial that interpolates h(x) at
x = −1, 0, 1, 2.

(b) Let g(x) = x4 − 1. Compute the degree-3 polynomial that interpolates g(x) at
x = −1, 0, 1, 2.

(c) Compute weights for the closed 4-point Newton-Cotes quadrature rule on [−1, 1].
(I.e., the equidistant rule with nodes at the boundaries.)

(d) Consider weights wj and w′j for a quadrature rule of the form∫ 1

0
f(x) dx ≈ w0f(0) + w1f(1) + w′0f

′(0) + w′1f
′(1),

where f ′ is the derivative of f . Compute these weights for a quadrature rule that
is exact for all polynomials up to degree 3.

(e) Given h > 0, compute weights for the following one-sided differentation formula,

f ′(x) = w0f(x) + w1f(x+ h) + w2f(x+ 2h)

so that the formula has as high a degree of polynomial accuracy as possible. What
is the truncation error for this formula?

(f) Given h > 0, compute the weights for the following central differentiation formula:

f ′′(x) = w−1f(x− h) + w0f(x) + w1f(x+ h)

so that the formula has as high a degree of polynomial accuracy as possible. What
is the truncation error for this formula?
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Computing assignment:

C1. (Polynomial interpolation) This problem concerns univariate polynomial interpolation.
a. Let h(x) = 1/(1 + 25x2). Let hN (x) denote the degree-(N − 1) polynomial interpolant

of h(x) at N equispaced points on the interval [−1, 1]. Plot h and the interpolant hN for
N = 5, 20, 50.

b. Plot the Lebesgue function for equispaced points on this interval for N = 5, 20, 50. Use
this to explain your findings in the previous part.

c. Let jN (x) denote the degree-(N − 1) polynomial interpolant of h(x) at N Chebyshev
points on [−1, 1]. Plot h and the interpolant jN for N = 5, 20, 50.

d. Plot the Lebesgue function for Chebyshev points on this interval for N = 5, 20, 50. Use
this to explain your findings in the previous part.

C2. (Fourier series error) In this problem you will approximate the following functions on the
interval [0, 2π]:

fj(θ) := exp gj(θ),

where gj(θ) are defined by the iterative relations for j ≥ 1:

gj(θ) :=

∫ θ

0
gj−1(τ) dτ − cj , g0(θ) :=


1, 0 ≤ θ < π

2
−1, π

2 ≤ θ <
3π
2

1 3π
2 ≤ θ ≤ 2π

The coefficients cj are chosen such that
∫ 2π
0 gj(θ) dθ = 0.

With pn the discrete Fourier Transform approximation described in P3, plot ‖f0 − pn‖L2 as
a function of n and use this to determine a rate of convergence. Note that you cannot really
compute the errors exactly, so you will need to use a discrete (say equidistant) grid to do so;
you will need to use a sufficiently refined grid so that errors measure mainly the error in Fourier
interpolation and are not dominated by the quadrature (discretization) error.

Repeat this experiment for j = 1, 2, 3, plotting the L2 error as a function of n and also deter-
mining the rate of convergence.
(Think a bit about the best way to present these results visually. From your expectation of
how the error should behave, what is a revealing way to visualize the errors?)

C3. (AAA rational approximation) Implement the AAA algorithm. Apply this algorithm for
approximation of the function

f(z) = tan(βz),

for complex numbers z and a given positive real parameter β. Use 1000 equispaced points on
the unit circle in the complex plane as the training grid, and plot the maximum error (on this
training grid) as a function of the number of iterations of the algorithm. Plot such curves for
β = 4, 16, 64, 256.
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