# Department of Mathematics, University of Utah <br> Analysis of Numerical Methods I <br> MATH 6610 - Section 001 - Fall 2020 <br> Homework 4 <br> Approximation techniques 

## Due Thursday, December 3, 2020 by 11:59pm MT

## Submission instructions:

Create a private repository on github.com named math6610-homework-4. Add your $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source files and your Matlab/Python code and push to Github. To submit: grant me (username akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not look at your submission until the due date+time specified above. If you choose this route, I will only grade the assignment associated with the last commit before the due date.
All commits timestamped after the due date+time will be ignored
All work in commits before the final valid timestamped commit will be ignored.

## Problem assignment:

P1. Let $w(x)$ be a strictly positive, bounded weight function on an interval $I$ on the real line. ( $I$ may be unbounded if $w$ decays at infinity sufficiently quickly.) Given $x_{1}, \ldots, x_{N} \in I$, let $I_{N}$ be the associated degree- $(N-1)$ polynomial interpolation operator, i.e., if $f$ is continuous, then $I_{N} f$ is degree- $(N-1)$ polynomial that interpolates $f$ at the $x_{j}$. Define

$$
C_{w}(I)=\left\{f: I \rightarrow \mathbb{R} \mid\|f\|_{w, \infty}<\infty\right\}, \quad\|f\|_{w, \infty}:=\sup _{x \in I} w(x)|f(x)|
$$

Prove the following weighted version of Lebesgue's Lemma,

$$
\left\|f-I_{N} f\right\|_{w, \infty} \leq\left[1+\Lambda_{w}\right] \inf _{p \in P_{N-1}}\|f-p\|_{w, \infty},
$$

where $P_{N-1}$ is the space of polynomials of degree at most $N-1$, and

$$
\Lambda_{w}=\sup _{x \in I} w(x) \sum_{j=1}^{N} \frac{\left|\ell_{j}(x)\right|}{w\left(x_{j}\right)},
$$

where $\ell_{j} \in P_{N-1}$ is the cardinal Lagrange interpolant, $\ell_{j}\left(x_{i}\right)=\delta_{i, j}$.
P2. Define the standard $L^{2}$ Sobolev spaces of periodic functions on $[0,2 \pi]$ : Given a nonnegative integer $s$,

$$
H_{p}^{s}([0,2 \pi])=\left\{f:[0,2 \pi] \rightarrow \mathbb{C} \mid f^{(r)}(0)=f^{(r)}(2 \pi) \text { for } r=0, \ldots s-1, \text { and }\|f\|_{H_{p}^{s}}<\infty\right\},
$$

where $f^{(r)}$ denotes the $r$ th derivative of $f\left(\right.$ with $\left.f^{(0)} \equiv f\right)$, and

$$
\|f\|_{H_{p}^{s}}^{2}=\sum_{j=0}^{s}\left\|f^{(j)}\right\|_{L^{2}}^{2}=\sum_{j=0}^{s} \int_{0}^{2 \pi}\left|f^{(j)}(x)\right|^{2} \mathrm{~d} x .
$$

Let $f_{n}$ denote the frequency- $n$ Fourier Series approximation to $f$ on $[0,2 \pi]$, i.e.,

$$
f_{n}(x)=\sum_{|j| \leq n} \widehat{f}_{j}(x) \frac{1}{\sqrt{2 \pi}} e^{i j x}
$$

Prove that,

$$
\begin{equation*}
\left\|f-f_{n}\right\|_{H_{p}^{j}} \leq n^{j-s}\|f\|_{H_{p}^{s}}, \quad 0 \leq j \leq s \tag{1}
\end{equation*}
$$

P3. (Discrete Fourier Transforms) Given $f \in L^{2}([0,2 \pi])$, consider the problem of approximating $f$ by a frequency- $n$ Fourier series:

$$
f(\theta) \approx p(\theta)=\sum_{|j| \leq n} c_{j} \phi_{j}(\theta), \quad \quad \phi_{j}(\theta)=\frac{1}{\sqrt{2 n+1}} e^{i j \theta}
$$

In this problem, we'll consider interpolative approximations with the equidistant nodal set on $[0,2 \pi]$,

$$
\theta_{k}=\frac{2 \pi k}{2 n+1}, \quad k=0, \ldots, 2 n
$$

The interpolation conditions on these $2 n+1$ points furnish constraints for the $2 n+1$ coefficients $c_{j}$ defined by the linear system:

$$
V c=f, \quad(f)_{j}=f\left(\theta_{j}\right), \quad(c)_{j}=c_{j}
$$

The map defined by matrix $V$ is called the Discrete Fourier Transform (DFT).
(a) Show that $V$ is unitary, hence the DFT is a unitary operator.
(b) Assume that $\|f\|_{\infty}:=\sup _{\theta \in[0,2 \pi]}|f(\theta)|$ is finite. Define the interpolation operator $I_{n}$ as the map $f \mapsto p$, with $f$ and $p$ as given above, where both are treated as elements of $L^{2}([0,2 \pi])$. Derive a bound for the norm of this operator:

$$
\left\|I_{n}\right\|_{L^{2}([0,2 \pi]) \mapsto L^{2}([0,2 \pi])}
$$

which may be in terms of $n$ and $\|f\|_{\infty}$, and $\|f\|_{L^{2}}$.
(c) Assume that $f \in H_{p}^{s}([0,2 \pi])$ for some $s>0$. Prove a variant of Lebesgue's Lemma using a combination of (i) the interpolation operator norm above and (ii) the bound for $L^{2}$-optimal Fourier series approximation (1). I.e., provide a bound for

$$
\left\|f-I_{n} f\right\|_{L^{2}}
$$

where the bound depends only on norms of $f$, and on $n$, and $s$.
P4. (Non-polynomial interpolation) Let $x_{1}, \ldots, x_{n+1}$ be distinct real-valued nodes on a compact interval $[a, b]$, and let $f$ be a given continuous function. Prove that the interpolation problem on these nodes that seeks a function $p$ from the space

$$
p \in \operatorname{span}\left\{1, e^{x}, e^{2 x}, \ldots, e^{n x}\right\}
$$

is unisolvent. (Hint: this problem can be reduced to polynomial interpolation.)

P5. This problem concerns interpolation, quadrature formulas, and differentiation formulas. All these problems should be done without a computer.
(a) Let $h(x)=x^{3}-1$. Compute the degree-3 polynomial that interpolates $h(x)$ at $x=-1,0,1,2$.
(b) Let $g(x)=x^{4}-1$. Compute the degree-3 polynomial that interpolates $g(x)$ at $x=-1,0,1,2$.
(c) Compute weights for the closed 4 -point Newton-Cotes quadrature rule on $[-1,1]$. (I.e., the equidistant rule with nodes at the boundaries.)
(d) Consider weights $w_{j}$ and $w_{j}^{\prime}$ for a quadrature rule of the form

$$
\int_{0}^{1} f(x) \mathrm{d} x \approx w_{0} f(0)+w_{1} f(1)+w_{0}^{\prime} f^{\prime}(0)+w_{1}^{\prime} f^{\prime}(1)
$$

where $f^{\prime}$ is the derivative of $f$. Compute these weights for a quadrature rule that is exact for all polynomials up to degree 3 .
(e) Given $h>0$, compute weights for the following one-sided differentation formula,

$$
f^{\prime}(x)=w_{0} f(x)+w_{1} f(x+h)+w_{2} f(x+2 h)
$$

so that the formula has as high a degree of polynomial accuracy as possible. What is the truncation error for this formula?
(f) Given $h>0$, compute the weights for the following central differentiation formula:

$$
f^{\prime \prime}(x)=w_{-1} f(x-h)+w_{0} f(x)+w_{1} f(x+h)
$$

so that the formula has as high a degree of polynomial accuracy as possible. What is the truncation error for this formula?

## Computing assignment:

C1. (Polynomial interpolation) This problem concerns univariate polynomial interpolation.
a. Let $h(x)=1 /\left(1+25 x^{2}\right)$. Let $h_{N}(x)$ denote the degree- $(N-1)$ polynomial interpolant of $h(x)$ at $N$ equispaced points on the interval $[-1,1]$. Plot $h$ and the interpolant $h_{N}$ for $N=5,20,50$.
b. Plot the Lebesgue function for equispaced points on this interval for $N=5,20,50$. Use this to explain your findings in the previous part.
c. Let $j_{N}(x)$ denote the degree- $(N-1)$ polynomial interpolant of $h(x)$ at $N$ Chebyshev points on $[-1,1]$. Plot $h$ and the interpolant $j_{N}$ for $N=5,20,50$.
d. Plot the Lebesgue function for Chebyshev points on this interval for $N=5,20,50$. Use this to explain your findings in the previous part.

C2. (Fourier series error) In this problem you will approximate the following functions on the interval $[0,2 \pi]$ :

$$
f_{j}(\theta):=\exp g_{j}(\theta)
$$

where $g_{j}(\theta)$ are defined by the iterative relations for $j \geq 1$ :

$$
g_{j}(\theta):=\int_{0}^{\theta} g_{j-1}(\tau) \mathrm{d} \tau-c_{j}, \quad g_{0}(\theta):=\left\{\begin{aligned}
1, & 0 \leq \theta<\frac{\pi}{2} \\
-1, & \frac{\pi}{2} \leq \theta<\frac{3 \pi}{2} \\
1 & \frac{3 \pi}{2} \leq \theta \leq 2 \pi
\end{aligned}\right.
$$

The coefficients $c_{j}$ are chosen such that $\int_{0}^{2 \pi} g_{j}(\theta) \mathrm{d} \theta=0$.
With $p_{n}$ the discrete Fourier Transform approximation described in P3, plot $\left\|f_{0}-p_{n}\right\|_{L^{2}}$ as a function of $n$ and use this to determine a rate of convergence. Note that you cannot really compute the errors exactly, so you will need to use a discrete (say equidistant) grid to do so; you will need to use a sufficiently refined grid so that errors measure mainly the error in Fourier interpolation and are not dominated by the quadrature (discretization) error.

Repeat this experiment for $j=1,2,3$, plotting the $L^{2}$ error as a function of $n$ and also determining the rate of convergence.
(Think a bit about the best way to present these results visually. From your expectation of how the error should behave, what is a revealing way to visualize the errors?)

C3. (AAA rational approximation) Implement the AAA algorithm. Apply this algorithm for approximation of the function

$$
f(z)=\tan (\beta z),
$$

for complex numbers $z$ and a given positive real parameter $\beta$. Use 1000 equispaced points on the unit circle in the complex plane as the training grid, and plot the maximum error (on this training grid) as a function of the number of iterations of the algorithm. Plot such curves for $\beta=4,16,64,256$.

