
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MATH 6610 – Section 001 – Fall 2020
Homework 3

LU and Cholesky factorizations

Due Friday, November 6, 2020 by 11:59pm MT

Submission instructions:
Create a private repository on github.com named math6610-homework-3. Add your LATEX
source files and your Matlab/Python code and push to Github. To submit: grant me (username
akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not look at your
submission until the due date+time specified above. If you choose this route, I will only grade
the assignment associated with the last commit before the due date.
All commits timestamped after the due date+time will be ignored
All work in commits before the final valid timestamped commit will be ignored.

Problem assignment:

Trefethen & Bau III, Lecture 20: # 20.1
Trefethen & Bau III, Lecture 21: # 21.6
Trefethen & Bau III, Lecture 23: # 23.1

Additional problems:

P1. (LU with partial pivoting) Let A ∈ Cn×n be invertible. Prove that the LU decomposition
algorithm with partial pivoting always successfully computes PA = LU .

P2. (Schur complements) Consider the block matrix

M =

(
A B
C D

)
,

where A ∈ Cm×m, D ∈ Cn×n, and B and C have appropriate rectangular size. Through-
out this problem, we will assume that both A and D are invertible. This problem con-
cerns, among other things, computing the solution vectors x, y. The Schur complement
of the block A of the matrix M is defined as

M/A := D − CA−1B,

Similarly, M/D := A − BD−1C is the Schur complement of D of the matrix M . For
this problem, you will be performing block matrix operations; in particular, block ma-
trix multiplication works like matrix multiplication with scalars. Perform the following
exercises:

(a) If B = 0, prove that detM = (detA)(detD). (It is tempting, but incorrect, to
use the familiar 2× 2 matrix determinant formula. Instead, perform block LU-type
elimination on the C block of M .)

Akil Narayan: akil (at) sci.utah.edu 1

Homework 3
6610 Analysis of Numerical Methods I University of Utah

(b) Prove, in general, that detM = detAdet(M/A) (Use the procedure as in part a,
but with B 6= 0, and then utilize part a.)

(c) If C = B∗ and both A and D are Hermitian, show that M is (Hermitian) positive
definite if and only if both A and M/A are (Hermitian) positive definite. (Perform
a symmetric LU, i.e., Cholesky-type, transformation on M similar to part a.)

(d) Given vectors f ∈ Cm and g ∈ Cn, consider the following linear system:(
A B
C D

)(
x
y

)
=

(
f
g

)
, x ∈ Cm, y ∈ Cn.

Give a formula for x and y that utilizes inverses of only A and M/A. (In particular,
show that a solution to the system exists if A and M/A are both invertible. Again,
perform block LU-type elimination.)

P3. (Sherman-Morrison-Woodbury identity) Consider the matrix M in the previous problem,
and assume that A, D, M/A, and M/D are all invertible. Consider the following matrix
system: (

A B
C D

)(
X
Y

)
=

(
0m×n
In×n

)
, (1)

whereX ∈ Cm×n and Y ∈ Cn×n. Using this to prove the (Sherman-Morrison-)Woodbury
matrix identity:

(M/A)−1 = D−1 +D−1C(M/D)−1BD−1.

One way to accomplish this is to solve the 2 x 2 block system above in 2 ways that result
in 2 different expressions for the solution Y : first eliminate X and solve for Y , and second
eliminate Y and solve for X.

P4. (Column-pivoted QR) Given A ∈ Cm×n, consider a column-pivoted QR decomposition,
i.e., a factorization of the form,

AP = QR,

where P is a permutation matrix that is chosen in the following way: At step j in the
orthogonalization process (say step j of Gram-Schmidt), the columns j, j + 1, . . . , n are
permuted/pivoted so that rjj will be as large as possible. Note that the vector p defined
as

p := P T


1
2
3
...
n

 ∈ Rn

has entries that identify the column pivots, i.e., the ordered column indices of A chosen
by the pivoting process.

(a) (Column-pivoted QR decompositions are rank-revealing, in a sense.) Prove that the
number of nonzero diagonal entries in R equals the rank of A.

Akil Narayan: akil (at) sci.utah.edu 2

Homework 3
6610 Analysis of Numerical Methods I University of Utah

(b) (Column-pivoted QR is greedy determinant maximization.) Assume n = rank(A).
For S any subset of {1, 2, . . . , n}, let AS denote the m× |S| submatrix of A formed
by selecting the column indices in S. Furthermore, let GS ∈ C|S|×|S| be defined as

GS = (AS)∗AS

Set S0 = {}, and consider the following iterative, greedy, determinant maximization
for j = 1, . . . n:

sj = argmaxk∈[n] detGSj−1∪{k}, Sj := Sj−1 ∪ {sj},

where [n] := {1, . . . , n}. Assuming each maximization yields a unique sj , show that
pj = sj for j = 1, . . . , n (where pj are the QR column pivots).

P5. (Partial LU pivoting is greedy determinant maximization.) LetA ∈ Cn×n, with rank(A) =
n. Show that the LU factorization with partial row pivoting,

PA = LU,

selects pivots via another kind of greedy determinant maximization. I.e., with S a subset
of [n] = {1, . . . , n} as in the previous problem, let SA denote the |S| × n matrix formed
by selecting the rows with indices S from A. Combining notation, SAR, for some R ⊂ [n]
is a |S| × |R| matrix formed by selecting from A the subblock corresponding to the rows
S and columns R.

Again with S0 = {}, then consider the optimization problem for j = 1, . . . , n:

sj = argmaxk∈[n]

∣∣∣det Sj−1∪{k}A[j]

∣∣∣
for j ≥ 1 where again S0 = {}. Assuming each maximization yields a unique sj , then
show that sj , for j = 1, . . . , n, equals the jth entry of the vector p defined by

p := P


1
2
3
...
m

 ∈ Rm

Akil Narayan: akil (at) sci.utah.edu 3

Homework 3
6610 Analysis of Numerical Methods I University of Utah

Computing assignment:

C1. (Low-rank approximation) In a programming language of your choice, program and test
several algorithms for computing low-rank approximations to matrices: Consider A ∈ Cn×n;
we’ve seen that the 2-norm optimal rank-k approximation to A is a truncated SVD:

Ak = argmin
rank(M)≤k

‖A−M‖2 , Ak :=
k∑

j=1

σjujv
∗
j ,

where (uj)
n
j=1 and (vj)

n
j=1 are the ordered left- and right-singular vectors of A, respectively, and

(σj)
n
j=1 are ordered (decreasing) singular values. Consider two other rank-k approximations to

A:

• (Column skeletonizations) Let S =⊂ {1, . . . , n} be a set of size k given by the first k
ordered pivots in a column-pivoted QR decomposition of A. As in previous problems,
AS denotes the n × k matrix formed by the columns S of A. Then a rank-k column
skeletonization Bk of A can be formed by

Bk = P (S)A,

where P (S) ∈ Cn×n is the orthogonal projection operator onto range(AS).

• (Interpolative decompositions) Let S ⊂ {1, . . . , n} be a set of size k given by the first k
ordered pivots in a partial-pivoting LU decomposition of A. As in previous problems,

SA denotes the k × n matrix formed by the rows S of A. Then a rank-k interpolative
decomposition Ck of A can be formed by

Ck = A[k]

(
SA[k]

)−1
(SA)

where [k] = {1, . . . , k}. Note that this is an oblique projection of the columns of A onto
range(A[k]) defined by enforcing interpolation in each column on elements in rows S.

Report the errors committed by Ak, Bk, and Ck (say in the 2-norm) as a function of k. For
test matrices to consider, you may either randomly generate A, or use an A from another
application (e.g., from the Yale face database). Why might one prefer to use Bk or Ck as
approximations instead of Ak?

(If you’re interested, replace Ck above with a full -pivoted version, i.e., Ck = AR (SAR)−1 (SA),
where (S,R) are the size-k row and column pivots, respectively from a full-pivoting LU de-
composition of A.)

Akil Narayan: akil (at) sci.utah.edu 4

Homework 3
6610 Analysis of Numerical Methods I University of Utah

C2. (Eigenvalue algorithms) In a programming language of your choice, program and test
several algorithms for computing eigenvalues:

a. Power iteration

b. Rayleigh iteration

c. The (unshifted) QR algorithm

d. The QR algorithm with shifts
For this problem, only consider Hermitian matrices A (for simplicity). Generate the appropri-
ate A ∈ Cn×n matrices via randomization. (E.g., set A← A+A∗ for a random, non-symmetric
matrixA; it’s ok if you specialize to real-valued matrices.) Compare results from the above algo-
rithms to a baseline, trusted algorithm. (E.g., Matlab’s eig or Python’s numpy.linalg.eigh)
Plot and evaluate the following metrics:

• Time required as a function of n

• Accuracy as a function of n (e.g., stacking the eigenvalues in a vector, the `2 or `∞ norm
of the difference between the exact and true vectors)

You may also test accuracy of eigenvectors if you wish, but this is a little more technical since
you have to normalize/scale them appropriately.
The purpose of this exercise is to gain familiarity with these algorithms without worrying
too much about stability or optimization. E.g., you can use simple (but generally unstable)
Hotelling deflation if necessaray at all, you need not reduce A to triangular structure, you may
use an unsophisticated choice of shifts (e.g., Rayleigh shifts), etc.

You are encouraged to exercise modularity in your code: build routines that accomplish specific,
very particular tasks, and then combine these routines in your iterative schemes.

Akil Narayan: akil (at) sci.utah.edu 5

