
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MATH 6610 – Section 001 – Fall 2020
Homework 1

Basic linear algebra and eigenvalues

Due Friday, September 18, 2020 by 11:59pm MT

Submission instructions:
Create a private repository on github.com named math6610-homework-1. Add your LATEX
source files and your Matlab/Python code and push to Github. To submit: grant me (username
akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not look at your
submission until the due date+time specified above. If you choose this route, I will only grade
the assignment associated with the last commit before the due date.
All commits timestamped after the due date+time will be ignored
All work in commits before the final valid timestamped commit will be ignored.

Problem assignment:
Trefethen & Bau III, Lecture 1: # 1.3
Trefethen & Bau III, Lecture 2: # 2.1, 2.2, 2.6
Trefethen & Bau III, Lecture 3: # 3.1, 3.2, 3.3
Trefethen & Bau III, Lecture 24: # 24.1, 24.2 (a and c)

P1. (Inner and outer products) Let A ∈ RK×n and B ∈ Rn×L be given matrices. The matrix
product AB ∈ RK×L has entries

(AB)k,` =

n∑
q=1

(A)k,q(B)q,`, k = 1, . . . ,K, ` = 1, . . . , L.

Using only this definition, prove the following:

(a) If R ∈ RK×n has rows {rk}Kk=1 and C ∈ Rn×L has columns {c`}L`=1, then

(RC)k,` = rTk c`.

(b) If R ∈ Rn×L has rows {rj}nj=1 and C ∈ RK×n has columns {cj}nj=1, then

CR =

n∑
j=1

cjr
T
j .

(c) What is the maximum possible rank of CR from part b? Justify your answer.

P2. (Unitary matrices and norms) Let U ∈ Cn×n be a unitary matrix. Prove the following:

(a) ‖Ux‖2 = ‖x‖2 ∀x ∈ Cn

(b) ‖U‖2 = 1

(c) ‖U‖F =
√
n
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(d) ‖UA‖2 = ‖A‖2 for arbitrary A ∈ Cn×m and arbitrary m ∈ N
(e) ‖UA‖F = ‖A‖F for arbitrary A ∈ Cn×m

Above ‖ · ‖2 is the 2-norm on vector or the induced 2-norm on matrices, and ‖ · ‖F is the
Frobenius norm.

P3. (Norms of projections) Let M ∈ [1,∞) and n ≥ 2 be arbitrary. Explicitly construct a
projection matrix P ∈ Rn×n such that ‖P‖2 = M .

P4. Prove the spectral theorem for skew-Hermitian matrices: If A ∈ Cn×n satisfies A = −A∗,
then A is unitarily diagonalizable with purely imaginary eigenvalues.

P5. (Permutation matrices) Let P ∈ Rn×n be a permutation matrix.

(a) Prove that P T is also a permutation matrix.

(b) Prove that P T = P−1.

(c) Prove that if P1 and P2 are both permutation matrices, then P1P2 is also a permu-
tation matrix.

(d) Is it true in general that P 2 = P? If so, prove it. If not, give a counterexample.

(e) Suppose P ∈ Cn×n is both a projection matrix and a permutation matrix. Show
that such a matrix P is unique, and explicitly compute its entries.

P6. (Commutativity and simultaneous diagonalizability) Two square matrices M1 and M2

commute if M1M2 = M2M1. Two square matrices M1 and M2 are simultaneuosly diag-
onalizable if there is a single square, invertible matrix V such that

M1 = V Λ1V
−1, M2 = V Λ2V

−1,

where Λ1 and Λ2 are diagonal matrices. Assume that square matrices A and B are
both (“individually”) diagonalizable, and that all the eigenvalues of A and B are simple.
Prove that they are simultaneously diagonalizable if and only if they commute. (The
simple eigenvalue assumption is actually not needed, but the proof in this case is more
involved.)

P7. (Generalized eigenvalue problems) Assume that A and B are n× n Hermitian matrices,
and that B is positive-definite. Consider the following generalized eigenvalue problem,

Find λ ∈ C, v ∈ Cn\{0} such that Av = λBv

Prove the following:

(a) There are n real-valued (generalized) eigenvalues and n linearly independent (gen-
eralized) eigenvectors.

(b) The n eigenvectors {vj}nj=1 are B-orthogonal: v∗jBvk = δj,k.

(c) The Courant-Fischer-Weyl min-max principle for this problem is that the eigenval-
ues {λj}nj=1, ordered such that λ1 ≤ λn, satisfy

λk = max
V⊂Cn

dimV=n−k+1

min
x∈V

RA,B(x), RA,B(x) :=
〈Ax, x〉
〈Bx, x〉

P8. (Principal Component Analysis) Let B ∈ Cm×n be comprised of columns bj , i.e.,

B =

 b1 b2 · · · bn

 .
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In this problem, we will view each column as a single piece of data in Cm-dimensional
space. In particular, we’ll consider these columns as random realizations from some
probability distribution on vectors. Under this model, the (empirical) mean of our set of
realizations is

b0 :=
1

n

n∑
j=1

bj ,

which is the “average” data point.
The ultimate goal of Principal Component Analysis (PCA) is to define a compression
matrix Q ∈ Cm×r such that the compressed matrix Q∗B contains as much of the “vari-
ance” of B as possible.
In particular, we consider the unnormalized variance of B when each data column is
projected onto the direction x ∈ Cm\{0}:

var x(B) := var (x̂∗B), x̂ :=
x

‖x‖2
,

where var (·) on row vectors is the unnormalized variance,

var (y) := (y − ȳ) (y − ȳ)∗ .

We will call var x(B) the (unnormalized) “directional variance” of B in the direction x;
a normalized variance only differs by a 1

n−1 multiplicative factor. Qualitatively, var x(B)
measures the amount of “information” or “energy” that the dataset contains in the
direction of x ∈ Cm. Given a subspace W ⊂ Cm, the smallest directional variance
within W is

min
x∈W

var x(B).

Restating the goal of PCA: Given some rank r ∈ {1, . . . ,m}, find a subspace W whose
smallest directional variance is as large as possible. I.e., to find W that maximizes the
variance when B is projected into W . Below, RC(·) is the Rayleigh quotient of a square,
symmetric matrix C.

(a) Show that var x(B) = RAA∗(x), where A := B − b0 11×n, where 11×n is an n-
dimensional row vector with all entries equal to 1.

(b) For a fixed r ∈ {1, . . . ,m}, prove that the subspace V that maximizes the smallest
directional variance within a rank-r subspace,

V := argmax
W∈Cm

dimW=r

min
x∈W

var x(B),

is given by span{vn, vn−1, . . . , vn−r+1}, where {(λj , vj)}mj=1 are the eigenpairs of AA∗

ordered as λj ≤ λj+1. (The matrix AA∗ is called the unnormalized covariance of
the data.)

Thus, if each vj is unit-length, the sought PCA compression matrix isQ = [vn . . . , vn−r+1] ∈
Cm×r. The vector vn is typically called the first principal component; vn−1 the second
principal component; etc.
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Computing assignment:

C1. (PCA and Eigenfaces) In a programming language of your choice, compute and plot
principal components for the Yale Face Database:
http://vision.ucsd.edu/content/yale-face-database

For this problem, grayscale images can be viewed as a matrix of numbers, where the dimensions
of the matrix correspond to the pixel dimensions of the image. In order to treat a given image
as a single data point (bj in problem P8), vectorize its matrix representation (i.e., unwind the
matrix into a vector). Plot the first three principal components for the subset of the data
that are “normal” faces. Repeat this experiment for the “glasses” faces, and finally for all the
facial images. Comment on the results that you see. For this type of experiment, the principal
components are frequently called “eigenfaces”.

Note: “Plotting” principal components does not mean plotting a vector. Plot them as images,
as you would the original data. They should be interpretable. This exercise requires you to
import and manipulate data from hard disk, and also to load and manipulate image data, so
you will have to learn how to accomplish this in your language of choice. Finally, submit your
code, but not the Yale Face Database data files. In your code provide an easy way for me to
point to a particular folder on my local hard drive that contains the data.
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