\qquad
For all the following multiple-choice questions, circle your answers clearly. No partial credit will be awarded; any scratch work will be ignored.

1. An equilibrium solution u_{e} for the heat equation (with appropriate initial and boundary conditions) satisfies which of the following properties in general?
(a) u_{e} does not respect the boundary conditions.
(b) $u_{e}=0$.
(c) u_{e} does not depend on time t.
(d) u_{e} is a quadratic function.
(e) u_{e} cannot be computed.
2. Suppose that $u_{1}(x, t)$ and $u_{2}(x, t)$ are two solutions to the linear, homogeneous heat equation. Which of the following results from the principle of superposition applied to the linear homogeneous heat equation?
(a) There are no other solutions to this equation.
(b) $u(x, t)=u_{1}(x, t) u_{2}(x, t)$ is a solution to this equation.
(c) $u(x, t)=u_{1}(x, t)+u_{2}(x, t)$ is a solution to this equation.
(d) Either $u_{1}(x, t)$ or $u_{2}(x, t)$ must equal the equilibrium solution $u_{e}(x)$.
(e) Both $u_{1}(x, t)$ and $u_{2}(x, t)$ must be constant functions.
3. With u_{1} and u_{2} arbitrary functions, c_{1} and c_{2} arbitrary constants, and L an operator, which of the following is the definition of linearity of L ?
(a) $L\left[c_{1} c_{2} u_{1} u_{2}\right]=c_{1} c_{2} u_{1} u_{2}$
(b) $L\left[c_{1} u_{1}+c_{2} u_{2}\right]=c_{1} L\left[u_{1}\right]+c_{2} L\left[u_{2}\right]$
(c) $c_{1} L\left[u_{1}\right]=c_{2} L\left[u_{2}\right]$
(d) $c_{1} L\left[u_{1}\right]+c_{2} L\left[u_{2}\right]=0$
(e) $c_{1}+c_{2}=L\left[u_{1}\right]+L\left[u_{2}\right]$
