Eigenvalue methods for DE's

MATH 2250 Lecture 35
Book section 7.3

November 26, 2019

Linear, constant-coefficient DE systems

In this section we will consider the following linear, constant-coefficient, homogeneous DE system:

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x},
$$

where \boldsymbol{A} is a constant matrix.
Our goal in this section is to compute the general solution to this equation.

Solutions via an ansatz

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}
$$

We take inspiration from our scalar DE experience: we make the ansatz

$$
\boldsymbol{x}(t)=\boldsymbol{v} e^{\lambda t}
$$

for an unknown constant λ and vector \boldsymbol{v}.
What condition must $(\lambda, \boldsymbol{v})$ satisfy so that this is a solution?

Solutions via an ansatz

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}
$$

We take inspiration from our scalar DE experience: we make the ansatz

$$
\boldsymbol{x}(t)=\boldsymbol{v} e^{\lambda t}
$$

for an unknown constant λ and vector \boldsymbol{v}.
What condition must $(\lambda, \boldsymbol{v})$ satisfy so that this is a solution?

$$
\begin{aligned}
\lambda \boldsymbol{v} e^{\lambda t} & =\boldsymbol{A} \boldsymbol{v} e^{\lambda t} \\
\lambda \boldsymbol{v} & =\boldsymbol{A} \boldsymbol{v} .
\end{aligned}
$$

Thus, our ansatz is a solution if and only if $(\lambda, \boldsymbol{v})$ is an eigenpair of \boldsymbol{A}.

Eigenvalue method

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}
$$

Thus, we can compute the general solution to this DE via the following algorithm:

- Compute the eigenvalues of \boldsymbol{A}.
- Compute n linearly independent eigenvectors of \boldsymbol{A}, if possible.
- If the above is possible, then $\boldsymbol{x}_{j}(t)=\boldsymbol{v}_{j} e^{\lambda_{j} t}$ for $j=1, \ldots, n$ are n linearly independent solutions to the DE, and hence superposition yields the general solution.

Example

Example (Example 7.3.1)

Compute the general solution to the DE system

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}+2 x_{2} \\
x_{2}^{\prime}(t) & =3 x_{1}-x_{2}
\end{aligned}
$$

Example

Example (Example 7.3.1)

Compute the general solution to the DE system

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}+2 x_{2} \\
x_{2}^{\prime}(t) & =3 x_{1}-x_{2}
\end{aligned}
$$

Example

Compute the general solution to the DE system

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}-2 x_{2} \\
x_{2}^{\prime}(t) & =-x_{1}+3 x_{2}-2 x_{3} \\
x_{3}^{\prime}(t) & =-x_{2}+3 x_{3}
\end{aligned}
$$

Complex eigenvalues

Complex eigenvalues can yield complex-valued solutions.
To obtain real-valued solutions, we combine real and imaginary parts (just as we did for scalar DE's).
Example (Example 7.3.3)
Solve the initial value problem,

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}-3 x_{2} \\
x_{2}^{\prime}(t) & =3 x_{1}+4 x_{2}
\end{aligned}
$$

with initial data $x_{1}(0)=1 x_{2}(0)=-1$.

