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Vector- and matrix-valued functions (1/2) 134-501

Before continuing with DE's, we first note that vectors and matrices can be
functions.

For example, we can have

x1(t) ar1(t) ai2(t) - ain(t)
o(t) — xzz(t) Al azl.(t) azzl(t) a2rf(f)
xn'(t) ani(t) ané(t) am;(t)
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Vector- and matrix-valued functions (1/2)

L34-S01

Before continuing with DE's, we first note that vectors and matrices can be

functions.

For example, we can have

x1(t) ar1(t) aiz(t)
olt) - m:(t)  A@ - azl.(t) azg(t)
n(t) an(t) anal(t)

A1n (t)
agn (t)

()

These functions have continuity or differentiability, if each of their

components is continuous or differentiable, respectively.
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Vector- and matrix-valued functions (2/2) L34-502

If A(t), and B(t) are matrix-valued functions, C' is a constant matrix, and ¢
is a scalar, then the following differentiation properties hold:

o 1(A+B)=4A+ 4B

o 1 (AB)=A4 + d4B
o L(cA)=cd2

o 4(CA)=-cC4t

° & (AC)=4C
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First-order systems of linear DE's 134-503

We consider the following first-order linear system:
' (t) = Az,

where x(t) is a size-n vector, and A is an n x n matrix.
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First-order systems of linear DE's 134-503

We consider the following first-order linear system:
' (t) = Az,
where x(t) is a size-n vector, and A is an n x n matrix.

Note that A can depend on t: all the results we discuss here apply to this
case.

However, in practice in this class we will generally only consider A as
constant.
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First-order systems of linear DE's 134-503

We consider the following first-order linear system:
' (t) = Az,
where x(t) is a size-n vector, and A is an n x n matrix.

Note that A can depend on t: all the results we discuss here apply to this
case.

However, in practice in this class we will generally only consider A as
constant.

The general first-order, linear, nonhomogeneous DE that we consider is
' (t) = Az + f(t).

If f =0, then the equation is homogeneous.
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Superposition 134-504

Most of our scalar DE theory extends to systems. We start with the principle
of superposition.

If &1(t),...,2x,(t) are all solutions to the homogeneous DE
' (t) = Az,

then
ac(t) = Z CjSCj(t) = clacl(t) + CQwQ(t) + e+ ann(t),
j=1

is also a solution to the DE.
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Example 1.34-505

Example (Example 7.2.2)

Verify that
362t e—5t
o1(t) = (o ). er(t) = 4o )

solve the DE
i 4 =3
a:(t)—<6 _7).
T

Also, compute a solution @(t) satisfying z(0) = (2 1 ).
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Linear independence (1/2) L34-506

Linear independence for vector-valued functions is defined as expected:
The size-n vector-valued functions x1(t), ..., x,(t) are linearly
independent on the interval I if the equation

clwl(t) + -+ Cnil?n(t) =0,

is true for all ¢ in I only when ¢y =---=¢, =0.
Otherwise, they are linearly dependent.
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Linear independence (1/2) L34-506

Linear independence for vector-valued functions is defined as expected:
The size-n vector-valued functions x1(t), ..., x,(t) are linearly
independent on the interval I if the equation

clwl(t) + -+ Cnil?n(t) =0,

is true for all ¢ in I only when ¢y =---=¢, =0.
Otherwise, they are linearly dependent.

Linear independence can be explicitly tested with the Wronskian. The scalar
function

W(t) =det | x1(t) x2(t) -+ xu(t)

is the Wronskian of 1 (t), ..., x,(t).

MATH 2250-004 — U. Utah Systems of DE's



Linear independence (2/2) L34-507

If 1(t),...,x,(t) are solutions to a linear, homogeneous system of n DE'’s,
then

e W(t) =0 for all t in I if and only if the functions are linearly dependent
on I.

@ W(t) # 0 for all ¢ in I if and only if the functions are linearly
independent on 1.
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Linear independence (2/2) L34-507

If 1(t),...,x,(t) are solutions to a linear, homogeneous system of n DE'’s,
then

e W(t) =0 for all t in I if and only if the functions are linearly dependent
on I.

@ W(t) # 0 for all ¢ in I if and only if the functions are linearly
independent on 1.

Example (Example 7.2.3)
Verify that the three functions

2¢t 2¢3t 2¢5t
zi(t)=[ 2" |, x2(t)= 0 . x3(t)=| —2e% |,
ot 3t 5t

are linearly independent on I = R.
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Solutions to homogeneous DE's L.34-508

From linearly independent solutions, we obtain general solutions:

Theorem
Consider the size-n system of DE’s x'(t) = Ax, and suppose that A is
continuous for every t in I. If x1(t),...,x,(t) are a linearly independent set

of solutions, then
z(t) = ) cjz;(t)
j=1

is the general solution to the DE for arbitrary ci,...,c,. (l.e., there are no
other solutions.)
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Solutions to non-homogeneous DE's L34-509

General solutions to non-homogeneous solutions work similarly:

Theorem

Consider the size-n system of non-homogeneous DE’s &' (t) = Ax + f(t),
and suppose that A is continuous for every t in I. Suppose that
x1(t),...,x,(t) are a linearly independent set of solutions to the
homogeneous DE &'(t) = Ax(t), and suppose that x,(t) is any solution to
the non-homogeneous DE. Tnen o

@(t) = @,(t) + ) ¢jay(t)
j=1

is the general solution to the non-homogeneous DE for arbitrary cy,. .., c,.
(l.e., there are no other solutions.)
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Example

Example (Example 7.2.5)

Consider the DE system initial value problem

() = 3z -2 -9t 13, x1(0)
y(@#t) = —x 3y —2z Tt —15,, x2(0)
2'(t) = -y 3z -6t 7, z3(0)
With « = (x,y, 2)7, the functions
2¢’ 2
wl(t) = 2€t y 1132(t) = 0 s wg(t) =
ot Bt

are solutions to homogeneous DE, and

_265t

L34-S10

265t

eSt

is a solution to the non-homogeneous DE. Solve the initial value problem.
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