Eigenvalues and eigenvectors

MATH 2250 Lecture 31
Book section 6.1

November 15, 2019

Solution methods for DE's

Given a second-order, linear, constant-coefficient DE,

$$
a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=f(x), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime},
$$

we have two ways to solve this equation:

- "Directly": the characteristic equation, undetermined coefficients
- Laplace transforms

Solution methods for DE's

Given a second-order, linear, constant-coefficient DE,

$$
a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=f(x), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime},
$$

we have two ways to solve this equation:

- "Directly": the characteristic equation, undetermined coefficients
- Laplace transforms

The next couple of weeks:
There is a third way we investigate solving such equations: through linear algebra.

As usual, we need some background before discussing DE's.

Recall: we use uppercase boldface letters (\boldsymbol{A}) to denote matrices, and lowercase boldface letters (\boldsymbol{v}) to denote vectors.

Let \boldsymbol{A} be an $n \times n$ (square!) matrix. Then a non-zero size- n vector \boldsymbol{v} is an eigenvector of \boldsymbol{A} if

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

for some scalar value λ. (Any scalar value is fine, even 0 .)

Recall: we use uppercase boldface letters (\boldsymbol{A}) to denote matrices, and lowercase boldface letters (\boldsymbol{v}) to denote vectors.

Let \boldsymbol{A} be an $n \times n$ (square!) matrix. Then a non-zero size- n vector \boldsymbol{v} is an eigenvector of \boldsymbol{A} if

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

for some scalar value λ. (Any scalar value is fine, even 0 .)

Example (Example 6.1.1)

Show that $\boldsymbol{v}=(2,1)^{T}$ is an eigenvector of the matrix

$$
\boldsymbol{A}=\left(\begin{array}{ll}
5 & -6 \\
2 & -2
\end{array}\right)
$$

Eigenvectors

Recall: we use uppercase boldface letters (\boldsymbol{A}) to denote matrices, and lowercase boldface letters (\boldsymbol{v}) to denote vectors.

Let \boldsymbol{A} be an $n \times n$ (square!) matrix. Then a non-zero size- n vector \boldsymbol{v} is an eigenvector of \boldsymbol{A} if

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

for some scalar value λ. (Any scalar value is fine, even 0 .)

Example (Example 6.1.1)

Show that $\boldsymbol{v}=(2,1)^{T}$ is an eigenvector of the matrix

$$
\boldsymbol{A}=\left(\begin{array}{ll}
5 & -6 \\
2 & -2
\end{array}\right)
$$

Note: the condition $\boldsymbol{v} \neq \mathbf{0}$ is important. Eigenvectors cannot be the zero vector $\mathbf{0}$. (Because $\mathbf{0}$ always satisfies $\boldsymbol{A 0}=\mathbf{0}$.)

Eigenvalues

Suppose \boldsymbol{v} is an eigenvector of \boldsymbol{A}. Then we have

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

The scalar λ that makes this equation true is called an eigenvalue of \boldsymbol{A}. (In the previous example, $\lambda=2$ is an eigenvalue of \boldsymbol{A}.)

Eigenvalues

Suppose \boldsymbol{v} is an eigenvector of \boldsymbol{A}. Then we have

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

The scalar λ that makes this equation true is called an eigenvalue of \boldsymbol{A}. (In the previous example, $\lambda=2$ is an eigenvalue of \boldsymbol{A}.)

Eigenvalues can be 0 . (This is informative.)
Eigenvectors cannot be $\mathbf{0}$. ($\boldsymbol{v}=\mathbf{0}$ is not informative.)
Eigenvectors are not unique: if $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$, then $2 \boldsymbol{v}$ also satisfies this equation.

Eigenvalues

Suppose \boldsymbol{v} is an eigenvector of \boldsymbol{A}. Then we have

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

The scalar λ that makes this equation true is called an eigenvalue of \boldsymbol{A}. (In the previous example, $\lambda=2$ is an eigenvalue of \boldsymbol{A}.)

Eigenvalues can be 0. (This is informative.)
Eigenvectors cannot be $\mathbf{0}$. ($\boldsymbol{v}=\mathbf{0}$ is not informative.)
Eigenvectors are not unique: if $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$, then $2 \boldsymbol{v}$ also satisfies this equation.

Example

Let V be the set of eigenvectors of the matrix \boldsymbol{A} with eigenvalue λ. Show that V is a subspace.
(This subspace V is called an eigenspace of \boldsymbol{A}.)

The characteristic equation (1/2)

How do we compute eigenvalues and eigenvectors? Given \boldsymbol{A}, we must find $(\lambda, \boldsymbol{v})$ satisfying

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}=\lambda \boldsymbol{I} \boldsymbol{v}
$$

where \boldsymbol{I} is the identity matrix.

The characteristic equation (1/2)

How do we compute eigenvalues and eigenvectors?
Given \boldsymbol{A}, we must find $(\lambda, \boldsymbol{v})$ satisfying

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}=\lambda \boldsymbol{I} \boldsymbol{v}
$$

where \boldsymbol{I} is the identity matrix.
Rewriting this, we have

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{v}=\mathbf{0} .
$$

Recall \boldsymbol{v} is not zero: thus, $\boldsymbol{A}-\lambda \boldsymbol{I}$ must be a matrix which multiplies a non-zero vector to result in $\mathbf{0}$.

The characteristic equation (1/2)

How do we compute eigenvalues and eigenvectors?
Given \boldsymbol{A}, we must find $(\lambda, \boldsymbol{v})$ satisfying

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}=\lambda \boldsymbol{I} \boldsymbol{v}
$$

where \boldsymbol{I} is the identity matrix.
Rewriting this, we have

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{v}=\mathbf{0} .
$$

Recall \boldsymbol{v} is not zero: thus, $\boldsymbol{A}-\lambda \boldsymbol{I}$ must be a matrix which multiplies a non-zero vector to result in $\mathbf{0}$.
Thus, $\boldsymbol{A}-\lambda \boldsymbol{I}$ must be a singular matrix.

The characteristic equation (2/2)

$\boldsymbol{A}-\lambda \boldsymbol{I}$ must be a singular matrix.
Recall that this is equivalent to:

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
$$

This turns out to be a polynomial equation in λ, whose roots define eigenvalues.
The equation $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ is the characteristic equation of \boldsymbol{A}.

The characteristic equation (2/2)

$\boldsymbol{A}-\lambda \boldsymbol{I}$ must be a singular matrix.
Recall that this is equivalent to:

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
$$

This turns out to be a polynomial equation in λ, whose roots define eigenvalues.
The equation $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ is the characteristic equation of \boldsymbol{A}.
How do we find eigenvectors? If λ is a root of the characteristic equation, then there must be a non-zero \boldsymbol{v} such that

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{v}=\mathbf{0} .
$$

This is just a linear system for an unknown \boldsymbol{v} that can be solved.

The characteristic equation (2/2)

$\boldsymbol{A}-\lambda \boldsymbol{I}$ must be a singular matrix.
Recall that this is equivalent to:

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
$$

This turns out to be a polynomial equation in λ, whose roots define eigenvalues.
The equation $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ is the characteristic equation of \boldsymbol{A}.
How do we find eigenvectors? If λ is a root of the characteristic equation, then there must be a non-zero \boldsymbol{v} such that

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{v}=\mathbf{0} .
$$

This is just a linear system for an unknown \boldsymbol{v} that can be solved.

Example (Example 6.1.2)

Compute all the eigenvalues and eigenvectors for

$$
\boldsymbol{A}=\left(\begin{array}{cc}
5 & 7 \\
-2 & -4
\end{array}\right)
$$

More examples (1/2)

Example

Compute the eigenvalues and eigenvectors of

$$
\boldsymbol{A}=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)
$$

(Eigenvalues/eigenvectors can be complex!)

Example

Compute the eigenvalues and eigenvectors of

$$
\boldsymbol{A}=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)
$$

(Eigenvalues/eigenvectors can be complex!)

Example (Example 6.1.4)

Compute the eigenvalues and eigenvectors of

$$
\boldsymbol{A}=\boldsymbol{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(Root multiplicity of the characteristic equation can correspond to dimensions of eigenspaces.)

More examples (2/2)

Example (Example 6.1.6)

Compute the eigenvalues and eigenvectors of

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-4 & 6 & 2 \\
16 & -15 & -5
\end{array}\right)
$$

(Computations are essentially the same for $n \times n$ matrices.)

More examples (2/2)

Example (Example 6.1.6)

Compute the eigenvalues and eigenvectors of

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-4 & 6 & 2 \\
16 & -15 & -5
\end{array}\right)
$$

(Computations are essentially the same for $n \times n$ matrices.)

Example

Compute the eigenvalues and eigenvectors of

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(Root multiplicity of characteristic equation need not correspond to dimensions of eigenspaces.)

