Laplace transform manipulations

MATH 2250 Lecture 28
Book section 10.3

November 4, 2019

DE's and Laplace transforms

We have use Laplace transforms to solve DE's of the form

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t)
$$

Typically, this requires us to compute inverse transforms of rational functions,

$$
X(s)=\frac{P(s)}{Q(s)},
$$

where P and Q are polynomials in s.

DE's and Laplace transforms

We have use Laplace transforms to solve DE's of the form

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t)
$$

Typically, this requires us to compute inverse transforms of rational functions,

$$
X(s)=\frac{P(s)}{Q(s)},
$$

where P and Q are polynomials in s.
We discuss two helpful techniques for computing these inverse transforms:

- partial fraction decompositions
- shift properties of the Laplace transform

Partial fractions (1/2)

Partial fraction decompositions is a technique for transforming $P(s) / Q(s)$ into a sum of "simpler" rational functions:

$$
\frac{P(s)}{Q(s)}=\frac{A_{1}}{s-a_{1}}+\frac{A_{2}}{s-a_{2}}+\cdots
$$

where a_{1}, a_{2}, \ldots are the roots of Q.
The coefficients A_{1}, A_{2}, \ldots are determined from P, Q, and a_{j} by some linear algebra.

Partial fractions (1/2)

Partial fraction decompositions is a technique for transforming $P(s) / Q(s)$ into a sum of "simpler" rational functions:

$$
\frac{P(s)}{Q(s)}=\frac{A_{1}}{s-a_{1}}+\frac{A_{2}}{s-a_{2}}+\cdots
$$

where a_{1}, a_{2}, \ldots are the roots of Q.
The coefficients A_{1}, A_{2}, \ldots are determined from P, Q, and a_{j} by some linear algebra.

The technique is complicated only by the event that sometimes roots of Q have multiplicity greater than 1 , e.g.:

$$
\frac{P(s)}{Q(s)}=\frac{s}{(s-2)^{2}}
$$

When a root a has multiplicity n, the correct partial fractions decomposition is

$$
\frac{P(s)}{Q(s)}=\frac{P(s)}{(s-a)^{n}}=\sum_{j=1}^{n} \frac{A_{j}}{(s-a)^{j}}
$$

Partial fractions (2/2)

Example

Compute the partial fractions decompositions of

$$
F(s)=\frac{s+2}{(s-2)^{2}}, \quad G(s)=\frac{s}{(s-1)^{3}}
$$

Partial fractions (2/2)

Example

Compute the partial fractions decompositions of

$$
F(s)=\frac{s+2}{(s-2)^{2}}, \quad G(s)=\frac{s}{(s-1)^{3}}
$$

The appearance of (irreducible) quadratic factors has a special form as well:

$$
\frac{s}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}
$$

Partial fractions (2/2)

Example

Compute the partial fractions decompositions of

$$
F(s)=\frac{s+2}{(s-2)^{2}}, \quad G(s)=\frac{s}{(s-1)^{3}}
$$

The appearance of (irreducible) quadratic factors has a special form as well:

$$
\frac{s}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}
$$

These factors can appear with higher multiplicities as well:

$$
\frac{s}{s\left(s^{2}+4\right)^{2}}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}+\frac{D s+E}{\left(s^{2}+4\right)^{2}}
$$

Translations and shifts (1/3)

We will need a second skill: the ability to deal with shifts.
I.e., given $F(s)$ and its inverse Laplace transform $f(t)$, what is the inverse Laplace transform of $F(s-a)$?

Translations and shifts (1/3)

We will need a second skill: the ability to deal with shifts.
I.e., given $F(s)$ and its inverse Laplace transform $f(t)$, what is the inverse Laplace transform of $F(s-a)$? A simple computation shows that if,

$$
F(s)=\mathcal{L}\{f\}=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t
$$

then

$$
F(s-a)=\int_{0}^{\infty} f(t) e^{-(s-a) t} \mathrm{~d} t=\int_{0}^{\infty} e^{a t} f(t) e^{-s t} \mathrm{~d} t=\mathcal{L}\left\{f(t) e^{a t}\right\}
$$

Thus, shifts in s-space correspond to multiplication by exponentials in t-space.

Examples (1/2)

Example (Example 10.3.2)

Compute the inverse Laplace transform of

$$
R(s)=\frac{s^{2}+1}{s^{3}-2 s^{2}-8 s}
$$

Examples (1/2)

Example (Example 10.3.2)

Compute the inverse Laplace transform of

$$
R(s)=\frac{s^{2}+1}{s^{3}-2 s^{2}-8 s}
$$

Example (Example 10.3.1)

Solve for the solution $x(t)$ from a mass-spring-damper system governed by the DE

$$
x^{\prime \prime}+6 x^{\prime}+34 x=0, \quad x(0)=3, \quad x^{\prime}(0)=1
$$

Examples (2/2)

Example (Example 10.3.4)

Solve for the solution $x(t)$ from a forced mass-spring-damper system governed by the DE

$$
x^{\prime \prime}+6 x^{\prime}+34 x=30 \sin 2 t, \quad x(0)=0, \quad x^{\prime}(0)=0 .
$$

Example (Example 10.3.5)

Compute the solution to the forced mass-spring system

$$
x^{\prime \prime}+\omega_{0}^{2} x=F_{0} \sin (\omega t), \quad x(0)=x^{\prime}(0)=0
$$

