DE's with Laplace transforms

MATH 2250 Lecture 27
Book section 10.2

November 1, 2019

DE's and Laplace transforms

Our goal is to solve DE's using Laplace transforms. Given,

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t),
$$

applying the Laplace transform yields

$$
a \mathcal{L}\left\{x^{\prime \prime}\right\}+b \mathcal{L}\left\{x^{\prime}\right\}+c \mathcal{L}\{x\}=\mathcal{L}\{f\} .
$$

Thus, we ned to compute Laplace transforms of derivatives to proceed.

Laplace transforms of derivatives $(1 / 2)$

Suppose we are given $f(t)$. What is $\mathcal{L}\left\{f^{\prime}(t)\right\}$?
By definition:

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} \mathrm{~d} t .
$$

Laplace transforms of derivatives (1/2)

Suppose we are given $f(t)$. What is $\mathcal{L}\left\{f^{\prime}(t)\right\}$?
By definition:

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} \mathrm{~d} t .
$$

Using integration by parts,

$$
\begin{aligned}
u & =e^{-s t}, & v & =f(t) \\
u^{\prime} & =-s e^{-s t}, & v^{\prime} & =f^{\prime}(t)
\end{aligned}
$$

we obtain

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t .
$$

Laplace transforms of derivatives (1/2)
Assume that $F(s):=\mathcal{L}\{f\}$ exists for $s>c$. Then $\mathcal{L}\left\{f^{\prime}(t)\right\}$ is given by

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0), \quad(s>c) .
$$

Laplace transforms of derivatives (1/2)
Assume that $F(s):=\mathcal{L}\{f\}$ exists for $s>c$. Then $\mathcal{L}\left\{f^{\prime}(t)\right\}$ is given by

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0), \quad(s>c) .
$$

Note that this procedure can be iterated:

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}\right\} & =s \mathcal{L}\left\{f^{\prime}\right\}-f^{\prime}(0) \\
& =s[s F(s)-f(0)]-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Laplace transforms of derivatives (1/2)
Assume that $F(s):=\mathcal{L}\{f\}$ exists for $s>c$. Then $\mathcal{L}\left\{f^{\prime}(t)\right\}$ is given by

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0), \quad(s>c) .
$$

Note that this procedure can be iterated:

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}\right\} & =s \mathcal{L}\left\{f^{\prime}\right\}-f^{\prime}(0) \\
& =s[s F(s)-f(0)]-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

And in general:

$$
\begin{aligned}
\mathcal{L}\left\{f^{(n)}\right\} & =s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-s f^{n-2}(0)-f^{(n-1)}(0) \\
& =s^{n} F(s)-\sum_{j=0}^{n-1} s^{n-1-j} f^{(j)}(0)
\end{aligned}
$$

Examples (1/2)

Example

Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=\sin (a t)$.

Examples (1/2)

Example

Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=\sin (a t)$.

Example

Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=3 t^{2}-\exp 2 t$.

Examples (1/2)

Example

Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=\sin (a t)$.
Example
Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=3 t^{2}-\exp 2 t$.
Example
Solve the initial value problem

$$
x^{\prime}(t)-4 x(t)=\sin t, \quad x(0)=1
$$

Example

Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=\sin (a t)$.

Example

Compute the Laplace transform of $f^{\prime}(t)$, where $f(t)=3 t^{2}-\exp 2 t$.

Example

Solve the initial value problem

$$
x^{\prime}(t)-4 x(t)=\sin t, \quad x(0)=1
$$

Example (Example 10.2.1)

Solve the initial value problem

$$
x^{\prime \prime}-x^{\prime}-6 x=0, \quad x(0)=2, \quad x^{\prime}(0)=-1 .
$$

Examples (2/2)

Example (Example 10.2.2)

Solve the initial value problem

$$
x^{\prime \prime}+4 x=\sin 3 t, \quad x(0)=x^{\prime}(0)=0
$$

Examples (2/2)

Example (Example 10.2.2)

Solve the initial value problem

$$
x^{\prime \prime}+4 x=\sin 3 t, \quad x(0)=x^{\prime}(0)=0 .
$$

Example (Example 10.2.4)
Compute the Laplace transform of $f(t)=t e^{a t}$.

Examples (2/2)

Example (Example 10.2.2)

Solve the initial value problem

$$
x^{\prime \prime}+4 x=\sin 3 t, \quad x(0)=x^{\prime}(0)=0 .
$$

Example (Example 10.2.4)
Compute the Laplace transform of $f(t)=t e^{a t}$.
Example (Example 10.2.5)
Compute the Laplace transform of $f(t)=t \sin (k t)$.

The mathematical idea

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t)
$$

Differential equations are, in general, difficult to solve.
This is in contrast to algebraic equations that are, generally, easier to solve.

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t)
$$

Differential equations are, in general, difficult to solve.
This is in contrast to algebraic equations that are, generally, easier to solve.
The Laplace transform turns a DE into an algebraic equation:

$$
a s^{2} X(s)+\left(b-a s x^{\prime}(0)\right) s X(s)+\left(c-a x^{\prime}(0)-b x(0)\right) X(s)=F(s)
$$

This is, therefore, much easier to solve.

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t)
$$

Differential equations are, in general, difficult to solve.
This is in contrast to algebraic equations that are, generally, easier to solve.
The Laplace transform turns a DE into an algebraic equation:

$$
a s^{2} X(s)+\left(b-a s x^{\prime}(0)\right) s X(s)+\left(c-a x^{\prime}(0)-b x(0)\right) X(s)=F(s)
$$

This is, therefore, much easier to solve.

The price we pay: we must learn how to efficiently compute the correspondence $f(t) \leftrightarrow F(s)$.

