Forced oscillation and resonance

MATH 2250 Lecture 26
Book section 10.1

October 28, 2019

Laplace transforms

We are comfortable solving some second-order constant coefficient equations:

$$
x^{\prime \prime}(t)+a_{1} x^{\prime}(t)+a_{0} x(t)=f(t)
$$

but our success depends on the form of $f(t)$.
For example, if f is discontinuous, we do not have a good way to solve this equation.

The method of Laplace transforms is meant to address this deficiency. First couple of lectures: understand the transform.

Laplace transforms

We are comfortable solving some second-order constant coefficient equations:

$$
x^{\prime \prime}(t)+a_{1} x^{\prime}(t)+a_{0} x(t)=f(t)
$$

but our success depends on the form of $f(t)$.
For example, if f is discontinuous, we do not have a good way to solve this equation.

The method of Laplace transforms is meant to address this deficiency. First couple of lectures: understand the transform.

Given $f(t)$ for $t \geqslant 0$, the Laplace transform of f is defined as

$$
F(s)=\mathcal{L}\{f(t)\}=: \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Examples

$$
F(s)=\mathcal{L}\{f(t)\}=: \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

The simplest way to understand this is to use it.
Example (Example 10.1.1)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=1$.

Examples

$$
F(s)=\mathcal{L}\{f(t)\}=: \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t .
$$

The simplest way to understand this is to use it.
Example (Example 10.1.1)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=1$.
Example (Example 10.1.2)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=e^{a t}$ for some (possibly complex!) scalar a.

Examples

$$
F(s)=\mathcal{L}\{f(t)\}=: \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t .
$$

The simplest way to understand this is to use it.
Example (Example 10.1.1)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=1$.
Example (Example 10.1.2)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=e^{a t}$ for some (possibly complex!) scalar a.
Example (Example 10.1.2)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=t e^{a t}$ for some (possibly complex!) scalar a.

Laplace transforms and linearity (1/2)

A property of Laplace transforms that we will use extensively is linearity.
The Laplace transform \mathcal{L} is a linear operator, i.e.,

$$
\begin{aligned}
\mathcal{L}\{f(t)+g(t)\} & =\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\} \\
\mathcal{L}\{c f(t)\} & =c \mathcal{L}\{f(t)\},
\end{aligned}
$$

where c is any (possibly complex) scalar.

Laplace transforms and linearity (1/2)

A property of Laplace transforms that we will use extensively is linearity.
The Laplace transform \mathcal{L} is a linear operator, i.e.,

$$
\begin{aligned}
\mathcal{L}\{f(t)+g(t)\} & =\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\} \\
\mathcal{L}\{c f(t)\} & =c \mathcal{L}\{f(t)\},
\end{aligned}
$$

where c is any (possibly complex) scalar.
Example
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=\cosh t$.

Laplace transforms and linearity (1/2)

A property of Laplace transforms that we will use extensively is linearity.
The Laplace transform \mathcal{L} is a linear operator, i.e.,

$$
\begin{aligned}
\mathcal{L}\{f(t)+g(t)\} & =\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\} \\
\mathcal{L}\{c f(t)\} & =c \mathcal{L}\{f(t)\},
\end{aligned}
$$

where c is any (possibly complex) scalar.

Example

Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=\cosh t$.

Example

Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=\cos a t$ for a a real-valued scalar.

Laplace transforms and linearity (2/2)

Example (Example 10.1.6)
Compute $F(s)=\mathcal{L}\{f\}$ for $f(t)=3 e^{2 t}+2 \sin ^{2}(3 t)$.

Inverse Laplace transforms

Laplace transforms have existence and uniqueness properties:
If $f(t)$ is piecewise continuous and satisfies

$$
|f(t)| \leqslant M e^{c t}, \quad \text { for all } t \geqslant T,
$$

for some M and c, and T, then $F(s)$ exists and is unique for all $s>c$.

Inverse Laplace transforms

Laplace transforms have existence and uniqueness properties:
If $f(t)$ is piecewise continuous and satisfies

$$
|f(t)| \leqslant M e^{c t}, \quad \text { for all } t \geqslant T,
$$

for some M and c, and T, then $F(s)$ exists and is unique for all $s>c$.
This motivates introduction of the inverse Laplace transform: given $F(s)$, its inverse Laplace transform is

$$
f(t):=\mathcal{L}^{-1}\{F(s)\}
$$

For our purposes: if F is the Laplace transform of f, then we call f the inverse transform of F.
Like the (forward) Laplace transform, the inverese Laplace transform is linear.

Inverse Laplace transforms

Laplace transforms have existence and uniqueness properties:
If $f(t)$ is piecewise continuous and satisfies

$$
|f(t)| \leqslant M e^{c t}, \quad \text { for all } t \geqslant T,
$$

for some M and c, and T, then $F(s)$ exists and is unique for all $s>c$.
This motivates introduction of the inverse Laplace transform: given $F(s)$, its inverse Laplace transform is

$$
f(t):=\mathcal{L}^{-1}\{F(s)\}
$$

For our purposes: if F is the Laplace transform of f, then we call f the inverse transform of F.
Like the (forward) Laplace transform, the inverese Laplace transform is linear.

Example

Compute the inverse Laplace transform of $F(s)=\frac{1}{s}$ and $G(s)=\frac{s}{s^{2}+9}$ with $s>0$.

