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L25-S01Forced oscillations

In systems whose homogeneous equations exhibit harmonic motion,

mx2 ` cx1 ` kx “ fptq,

the forcing function f is often an oscillatory function, e.g, fptq “ sinpωtq or
fptq “ cospωtq.

We will study solutions to such systems in this section.

There are two regimes of interest: the undamped, and the damped case.
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L25-S02Undamped forced oscillations
Consider the DE

mx2 ` kx “ F0 cospωtq.

where F0 and ω are given constants.

A computation shows that the general solution is:

xptq “ c1 cospω0tq ` c2 sinpω0tq `A cospωtq,

where

ω0 “

c

k

m
, A “

F0{m

ω2
0 ´ ω

2
.

If we further impose xp0q “ x1p0q “ 0, then we have

xptq “ ´A cospω0tq `A cospωtq,

xptq “ 2A

ˆ

sin
1

2
ω0t

˙ˆ

sin
1

2
ωt

˙

Thus, the solution is a faster frequency modulated by a slower one.
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L25-S03Pure resonance

In our undamped forced oscillations case, if ω “ ω0, some coefficients blow
up.
This is because the DE

mx2 ` kx “ F0 cospω0tq.

is forced with the natural frequency ω0 “
a

k{m. This is called (pure)
resonance.

The solution to the DE in this case is

xptq “ c1 cospω0tq ` c2 sinpω0tq ` c3t cospω0tq ` c4t sinpω0tq.

Therefore, this model contains solutions whose amplitudes grow in time.

Generally speaking, this is interpreted as instability of a system.
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L25-S04Damped forced oscillations

Now consider the DE

mx2 ` cx1 ` kx “ F0 cospωtq,

with c ą 0. The solution is a sum of the homogeneous and particular
solutions.

Recall that, as long as c ą 0, then all homogeneous solutions decay to 0 as
t Ò 8.
For this reason, the solution component from the homogeneous component is
called the transient solution.

But the particular solution is one of the form cospωtq and sinpωtq and thus
are steady periodic components.

Thus, the full solution is a sum of transient and steady periodic components.
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L25-S05Practical resonance

mx2 ` cx1 ` kx “ F0 cospωtq,

Using undetermined coefficients, we can compute that the particular (steady
periodic) solution is of the form

xpptq “ Cpωq cospωt´ αq,

where

Cpωq “
F0

a

pk ´mω2q2 ` pcωq2
.

Thus for ω ą 0 there is a maximum (but finite!) value of Cpωq occurs if
c ă

?
2km.

The ω that causes this maximum Cpωq results in practical resonance.
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