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Mass-spring-damper systems L.23-501

Second-order constant coefficient DE's arise in common situations.
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An object with mass m is attached to a spring with spring constant &, and to
a damper ("dashpot") with constant c.
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Mass-spring-damper systems L.23-501

Second-order constant coefficient DE's arise in common situations.

m

C
v — 00
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Equilibrium
position

An object with mass m is attached to a spring with spring constant &, and to
a damper ("dashpot") with constant c.

If 2:(t) is the horizontal position of the object (relative to equilibrium), then
Newton's second law yields:

maz"(t) = ma(t) = Z(forces) = —kx —cv + Fopy = —kx — ¢’ + Foxy
Thus, the DE describing the motion of the block is:
ma” + cx’ + kx = Fo,

where m, ¢, and k are positive constants, F..; is a given forcing function.
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Mass-spring-damper characteristics L23-502

ma” 4 cx’ + kv = Foy,

If ¢ =0, the system is called undamped.
If Foxy = 0, the system is free or unforced.

Many physical models yield this equation: motions of pendulums,
propagation of waves (water, air, music, seismic), quantum mechanics, ....
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Mass-spring-damper characteristics L23-502

ma” 4 cx’ + kv = Foy,

If ¢ =0, the system is called undamped.
If Foxy = 0, the system is free or unforced.

Many physical models yield this equation: motions of pendulums,
propagation of waves (water, air, music, seismic), quantum mechanics, ....

Since all the constants are positive, we can deduce some properties of the
homogeneous system from the characteristic equation roots:

1
T:—[—ci 62—4km].
2m

o If ¢ — 4km < 0: the real part of the roots are negative = exponential
decay of solutions.

o If ¢ — 4km > 0: the roots are real, distinct, and negative —
exponential decay of solutions.
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Free, undamped motion L23-503

" !
mx’ + cx’ + kxr = Foy,

The special case of ¢ = 0 and F,,; = 0 comes up so often that it deserves
special study.

This simplification results in simple harmonic motion.
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Free, undamped motion L23-503

" !
mx’ + cx’ + kxr = Foy,

The special case of ¢ = 0 and F,,; = 0 comes up so often that it deserves
special study.

This simplification results in simple harmonic motion.

ma” +kx =0

The general solution to this equation is

x(t) = Cy cos(wt) + Cy sin(wt), w = \/E
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Free, undamped motion L23-504

ma” + kx = 0,

k

z(t) = C1 cos(wt) + Cy sin(wt), wi= g

When coupled with initial data, say (0) = z an 2/(0) = x{,, we obtain

(0 () + 2 sin(wt) ook
X = X COS|W — SIn{w = —
0 w s -
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Free, undamped motion L23-504

ma” 4+ kx =0,
k

z(t) = C1 cos(wt) + Cy sin(wt), wi= g

When coupled with initial data, say (0) = z an 2/(0) = x{,, we obtain

x(t) = g cos(wt) + 0 sin(wt) W= i
—_ 0 w 5 o mo

It is more instructive to write this as
x(t) = Acos(wt — ¢),

which can be accomplished using trigonometric identities:

2 /
x T
A= :Eg+<0), ¢=arctan< 0).
w W

Thus, this motion is oscillatory.
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Free, undamped motion

ma” 4 cx’ + kr = Foy,
x(t) = Acos(wt — @),

Properties of the trajectory z(t):
@ A is the amplitude.
@ w is the frequency.
o 2% s the period.

@ ¢ is the phase or lag.

L23-S05
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Free, undamped motion

ma” 4 cx’ + kr = Foy,
x(t) = Acos(wt — @),

Properties of the trajectory z(t):
@ A is the amplitude.
@ w is the frequency.
o 2% s the period.

@ ¢ is the phase or lag.
Example (Example 5.4.1)

L23-S05

A body with mass % kilogram (kg) is attached to the end of a spring that is
stretched 2 meters (m) by a force of 100 newtons (N). It is set in motion
with initial position £y = 1 (m) and initial velocity vg = —5 (m/s). (Note
that these initial conditions indicate that the body is displaced to the right
and is moving to the left at time ¢ = 0.) Find the position function of the
body as well as the amplitude, frequency, period of oscillation, and time lag

of its motion.

MATH 2250-004 — U. Utah

Linear DE's



Free, damped motion 123-506

Moving beyond simple harmonic motion, we consider the damped case.
ma” + cx' + kx =0

The general solution depends on the relationship between m, ¢, k > 0.
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Free, damped motion 123-506

Moving beyond simple harmonic motion, we consider the damped case.
ma” + cx' + kx =0

The general solution depends on the relationship between m, ¢, k > 0.
e (Underdamped) If ¢ — 4km < 0:

x(t) = Cy exp(—pt) cos(wt) + Co exp(—pt) sin(wt),

with p :== ¢/(2m) > 0 and w = vV4km — ¢2/(2m).
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Free, damped motion 123-506

Moving beyond simple harmonic motion, we consider the damped case.
ma” + cx' + kx =0

The general solution depends on the relationship between m, ¢, k > 0.
e (Underdamped) If ¢ — 4km < 0:

x(t) = Cy exp(—pt) cos(wt) + Co exp(—pt) sin(wt),

with p :== ¢/(2m) > 0 and w = vV4km — ¢2/(2m).
o (Overdamped) If ¢? — 4km > 0:

x(t) = Cy exp(—p1t) + Cy exp(—pat),
with

p1 = L [—C-i- 02—4km] Do = 1 [—c—\/c2—4km].

2m 2m
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Free, damped motion 123-506

Moving beyond simple harmonic motion, we consider the damped case.
ma” + cx' + kx =0

The general solution depends on the relationship between m, ¢, k > 0.
e (Underdamped) If ¢ — 4km < 0:

z(t) = C1 exp(—pt) cos(wt) + Cq exp(—pt) sin(wt),

with p :== ¢/(2m) > 0 and w = vV4km — ¢2/(2m).
o (Overdamped) If ¢? — 4km > 0:

x(t) = Cy exp(—p1t) + Cy exp(—pat),
with

p1 = L [—C-i- 02—4k‘m] Do = 1 [—c—\/c2—4km].

2m 2m
o (Criticially Damped) If ¢? — 4km = 0:

x(t) = C1 exp(—pt) + Cat exp(—pt),
with p = —c/(2m).
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