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L23-S01Mass-spring-damper systems
Second-order constant coefficient DE’s arise in common situations.

302 Chapter 5 Higher-Order Linear Differential Equations

fsolve(r^3 -- 3*r^2 + 1 = 0, r); (Maple)
NSolve[r^3 -- 3*r^2 + 1 == 0, r] (Mathematica)
r^3 -- 3r^2 + 1 = 0 (WolframjAlpha)
roots([1 --3 0 1]) (MATLAB)

(In the MATLAB command, one enters the polynomial’s vector [1 --3 0 1]

of coefficients, listed in descending order.) However we find these approximate
roots, it follows that a general solution of the differential equation in (1) is given
(approximately) by

y.x/ D c1e
!.0:5321/x C c2e

.0:6527/x C c3e
.2:8794/x : (3)

Use calculator or computer methods like those indicated here to find general
solutions (in approximate numerical form) of the following differential equations.

1. y.3/ ! 3y0 C y D 0

2. y.3/ C 3y00 ! 3y D 0

3. y.3/ C y0 C y D 0

4. y.3/ C 3y0 C 5y D 0

5. y.4/ C 2y.3/ ! 3y D 0

6. y.4/ C 3y0 ! 4y D 0

5.4 Mechanical Vibrations
The motion of a mass attached to a spring serves as a relatively simple example
of the vibrations that occur in more complex mechanical systems. For many such
systems, the analysis of these vibrations is a problem in the solution of linear differ-
ential equations with constant coefficients.

We consider a body of mass m attached to one end of an ordinary spring that
resists compression as well as stretching; the other end of the spring is attached to
a fixed wall, as shown in Fig. 5.4.1. Assume that the body rests on a frictionless
horizontal plane, so that it can move only back and forth as the spring compresses
and stretches. Denote by x the distance of the body from its equilibrium position—
its position when the spring is unstretched. We take x > 0 when the spring is
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x

FIGURE 5.4.1. A mass–spring–
dashpot system.

stretched, and thus x < 0 when it is compressed.
According to Hooke’s law, the restorative force FS that the spring exerts on

the mass is proportional to the distance x that the spring has been stretched or com-
pressed. Because this is the same as the displacement x of the mass m from its
equilibrium position, it follows that

FS D !kx: (1)

The positive constant of proportionality k is called the spring constant. Note that
FS and x have opposite signs: FS < 0 when x > 0, FS > 0 when x < 0.

Figure 5.4.1 shows the mass attached to a dashpot—a device, like a shock
absorber, that provides a force directed opposite to the instantaneous direction of
motion of the mass m. We assume the dashpot is so designed that this force FR is
proportional to the velocity v D dx=dt of the mass; that is,

FR D !cv D !c
dx

dt
: (2)

The positive constant c is the damping constant of the dashpot. More generally,
we may regard Eq. (2) as specifying frictional forces in our system (including air
resistance to the motion of m).

An object with mass m is attached to a spring with spring constant k, and to
a damper ("dashpot") with constant c.

If xptq is the horizontal position of the object (relative to equilibrium), then
Newton’s second law yields:

mx2ptq “ maptq “
ÿ

pforcesq “ ´kx´ cv ` Fext “ ´kx´ cx
1 ` Fext

Thus, the DE describing the motion of the block is:

mx2 ` cx1 ` kx “ Fext,

where m, c, and k are positive constants, Fext is a given forcing function.
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mx2 ` cx1 ` kx “ Fext,

If c “ 0, the system is called undamped.
If Fext “ 0, the system is free or unforced.

Many physical models yield this equation: motions of pendulums,
propagation of waves (water, air, music, seismic), quantum mechanics, ....

Since all the constants are positive, we can deduce some properties of the
homogeneous system from the characteristic equation roots:

r “
1

2m

”

´c˘
a

c2 ´ 4km
ı

.

If c2 ´ 4km ă 0: the real part of the roots are negative ùñ exponential
decay of solutions.
If c2 ´ 4km ą 0: the roots are real, distinct, and negative ùñ
exponential decay of solutions.
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L23-S03Free, undamped motion

mx2 ` cx1 ` kx “ Fext,

The special case of c “ 0 and Fext “ 0 comes up so often that it deserves
special study.

This simplification results in simple harmonic motion.

mx2 ` kx “ 0

The general solution to this equation is

xptq “ C1 cospωtq ` C2 sinpωtq, ω :“

c

k

m
.
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mx2 ` kx “ 0,

xptq “ C1 cospωtq ` C2 sinpωtq, ω :“

c

k

m
.

When coupled with initial data, say xp0q “ x0 an x1p0q “ x1
0, we obtain

xptq “ x0 cospωtq `
x1
0

ω
sinpωtq, ω :“

c

k

m
.

It is more instructive to write this as

xptq “ A cospωt´ φq,

which can be accomplished using trigonometric identities:

A “

d

x20 `

ˆ

x1
0

ω

˙2

, φ “ arctan

ˆ

x1
0

ωx0

˙

.

Thus, this motion is oscillatory.
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L23-S05Free, undamped motion

mx2 ` cx1 ` kx “ Fext,

xptq “ A cospωt´ φq,

Properties of the trajectory xptq:
A is the amplitude.
ω is the frequency.
2π
ω is the period.
φ is the phase or lag.

Example (Example 5.4.1)
A body with mass 1

2 kilogram (kg) is attached to the end of a spring that is
stretched 2 meters (m) by a force of 100 newtons (N). It is set in motion
with initial position x0 “ 1 (m) and initial velocity v0 “ ´5 (m/s). (Note
that these initial conditions indicate that the body is displaced to the right
and is moving to the left at time t “ 0.) Find the position function of the
body as well as the amplitude, frequency, period of oscillation, and time lag
of its motion.
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L23-S06Free, damped motion
Moving beyond simple harmonic motion, we consider the damped case.

mx2 ` cx1 ` kx “ 0

The general solution depends on the relationship between m, c, k ą 0.

(Underdamped) If c2 ´ 4km ă 0:

xptq “ C1 expp´ptq cospωtq ` C2 expp´ptq sinpωtq,

with p :“ c{p2mq ą 0 and ω “
?
4km´ c2{p2mq.

(Overdamped) If c2 ´ 4km ą 0:

xptq “ C1 expp´p1tq ` C2 expp´p2tq,

with

p1 “
1

2m

”

´c`
a

c2 ´ 4km
ı

,p2 “
1

2m

”

´c´
a

c2 ´ 4km
ı

.

(Criticially Damped) If c2 ´ 4km “ 0:

xptq “ C1 expp´ptq ` C2t expp´ptq,

with p “ ´c{p2mq.
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