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Constant coefficient homogeneous equations 122-501

In this section we consider computing the general solution to the DE
any™ + an_ 1y + -+ a1y + agy = 0,

where ag, a1, ...,a, are constants, and a,, # 0.

MATH 2250-004 — U. Utah Linear DE's



Constant coefficient homogeneous equations 122-501

In this section we consider computing the general solution to the DE
any™ + a1y 4+ ary + agy =0,
where ag, a1, ...,a, are constants, and a,, # 0.
As before, the way forward is to use the ansatz
y(x) = exp(rz),
with 7 an unknown constant, in the DE. This yields the characteristic

equation,

n
9 ' _1 7
A" 4+ Q" A ar Fag = E a;r? =0,
Jj=0

which is a condition on possible values of 7.
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Distinct, real-valued roots L22-502

If the characteristic equation has distinct, real-valued roots,
r=7r,T2,...,T,, then we can identify n linearly independent solutions:

y1(xz) = exp(riz), ya2(x) = exp(rex), -+ yn(x) = exp(rpx).

Therefore, in this case of distinct, real roots, the general solution to the DE
is

V@) = Y e @)
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Distinct, real-valued roots L22-502

If the characteristic equation has distinct, real-valued roots,
r=7r,T2,...,T,, then we can identify n linearly independent solutions:

y1(xz) = exp(riz), ya2(x) = exp(rex), -+ yn(x) = exp(rpx).

Therefore, in this case of distinct, real roots, the general solution to the DE
is

V@) = Y e @)

Example (Example 5.3.1)
Solve the initial value problem
y® 4+ 3y" — 10y =0,
y(0) =7, ¥/(0) =0, y"(0) = 170.
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Real, repeated roots L22-503

The case of real, repeated roots is more delicate. To simplify the situation,
suppose we have a DE

any™ + an_1y™ T 4+ a1y + agy = 0,

whose characteristic equation
n
ed —
2, @’ =0,
§=0

has k£ > 1 repeated real roots at ry. l.e., it can be written as

n—k
k
(r—r)* [Jr=7;) =0,
j=1
where 71,79, ...,7,_) are distinct. The focus is on the repated root 7.
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Real, repeated roots L22-503

The case of real, repeated roots is more delicate. To simplify the situation,
suppose we have a DE

any™ + an_1y™ T 4+ a1y + agy = 0,

whose characteristic equation

n
Z a;r’ =0,
j=0

has k£ > 1 repeated real roots at ry. l.e., it can be written as

n—k
k
(r—r)* [Jr=7;) =0,
j=1
where 71,79, ...,7,_) are distinct. The focus is on the repated root 7.

Can we find k linearly independent solutions from the repeated root? Clearly
one solution is

u(x) = exp(rox),

but we need £ — 1 more solutions.

MATH 2250-004 — U. Utah Linear DE's



Variation of parameters (1/3) L22-504

The strategy to compute the remaining solutions appeals to a technique
called variation of parameters.

First note that the distinct roots are distractions. l.e., we can focus on
finding solutions for a simpler characteristic equation and its associated DE:

k d g
(r—rp)" =0 < a—ro y=20
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Variation of parameters (1/3) L22-504

The strategy to compute the remaining solutions appeals to a technique
called variation of parameters.

First note that the distinct roots are distractions. l.e., we can focus on
finding solutions for a simpler characteristic equation and its associated DE:

k d g
(r—rp)" =0 < a—ro y=20

The idea is as follows: we know that u(x) = cexp(rox) solves the DE for a
constant c.

A reasonable guess then, is that perhaps

w(z) = p(x) exp(roz),

for some unknown function p(x), will solve the equation. What should p
satisfy?
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Variation of parameters (2/3) L22-505

Note that

[civ — 7“0] w(z) = p'(z) exp(roz) + rop(x) exp(roz) — rop(z) exp(roz)

= p'(x) exp(roz)

By repeatedly applying this differential operator, then the DE states:

£ ro]k w(z) = p¥)(z) explroz) = 0.
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Variation of parameters (2/3) L22-505

Note that

[c?x — 7“0] w(x) = p'(x) exp(roz) + rop(x) exp(roz) — rop(x) exp(rox)

= p'(x) exp(roz)

By repeatedly applying this differential operator, then the DE states:

£ ro]k w(z) = p¥)(z) explroz) = 0.

This implies
k=1
p(k)(x) =0 — pa)=co+crx+- - +cp_a 7l = Z ¢z’
j=0

so that w(z) = p(x) exp(rox) now identifies k linearly independent functions.
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Variation of parameters (3/3) L22-506

In summary, if the characteristic equation for a DE has k repeated roots with
r = rg, then the k linearly indpendent solutions associated with this root are:

y1(z) = exp(roz),
y2(x) = zexp(roz),
ys(x) = z? exp(rox),

yr(x) = k-t exp(rox).
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Variation of parameters (3/3) L22-506

In summary, if the characteristic equation for a DE has k repeated roots with
r = rg, then the k linearly indpendent solutions associated with this root are:

y1(z) = exp(roz),
y2(x) = zexp(roz),
ys(x) = z? exp(rox),

yr(x) = k-t exp(rox).

Example (Example 5.3.2)

Compute the general solution to the DE

9y®) — 6y + yB = 0.
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Complex valued roots L22-507

Recall that if an algebraic equation

n
Z a;r’ =0,
Jj=0

with real-valued coefficients a; has a complex root, then its complex
conjugate is also a root.

l.e., any complex-valued roots r come in conjugate pairs for real-valued
algebraic equations:

r=o0+iw, 7= /—1.

where o and w are real numbers.
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Complex valued roots L22-507

Recall that if an algebraic equation

n
Z a;r’ =0,
Jj=0

with real-valued coefficients a; has a complex root, then its complex
conjugate is also a root.

l.e., any complex-valued roots r come in conjugate pairs for real-valued
algebraic equations:

r=o0+iw, 7= /—1.

where o and w are real numbers. Before proceeding, we review some basic
facts about complex arithmetic: with  and y real numbers:

z =z + 1y, |z] = Va2 + y2.
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Complex valued roots

A fundamental tool is Euler’s identity:

exp(if) = cosf + isinb,
and so all complex number have a polar form:

z =z + 1y = rexp(ih),

where r = |z| and 6 = arctan(y/z).

L22-S08
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Complex valued roots L22-508

A fundamental tool is Euler’s identity:

exp(if) = cosf + isinb,
and so all complex number have a polar form:

z =z + 1y = rexp(ih),
where r = |z| and 6 = arctan(y/z).

Complex-valued roots are not a problem, in principle: if r = o + iw are
conjugate roots of the characteristic equation, then

y1(z) = exp((o + iw)z), y2(z) = exp((0 — iw)z)

are two linearly independent solutions to the DE. (Check their linear
independence!)
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Complex valued roots L22-508

A fundamental tool is Euler’s identity:

exp(if) = cosf + isinb,
and so all complex number have a polar form:

z =z + 1y = rexp(ih),
where r = |z| and 6 = arctan(y/z).

Complex-valued roots are not a problem, in principle: if r = o + iw are
conjugate roots of the characteristic equation, then

y1(z) = exp((o + iw)z), y2(z) = exp((0 — iw)z)

are two linearly independent solutions to the DE. (Check their linear
independence!)

Example
Compute the general solution to " +y = 0.
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Trigonometric solutions L22-S09

While complex-valued solutions to DE's are in principle fine, they are difficult
to physically interpret if the DE models a real-valued system.
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Trigonometric solutions L22-S09

While complex-valued solutions to DE's are in principle fine, they are difficult
to physically interpret if the DE models a real-valued system.

Euler’s identity can help rewrite complex exponentials in real-valued form: if
two characteristic equation roots are o + iw, then a linear combination of
them can be rearranged:

c1exp((o + iw)x) + ca exp((o —iw)x) =
(c1 + c2) exp(oz) cos(wz) + i(c1 — ¢2) exp(ox) sin(wzx) =

czexp(oz) cos(wx) + cq exp(ox) sin(wz).
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Trigonometric solutions L22-S09

While complex-valued solutions to DE's are in principle fine, they are difficult
to physically interpret if the DE models a real-valued system.

Euler’s identity can help rewrite complex exponentials in real-valued form: if
two characteristic equation roots are o + iw, then a linear combination of
them can be rearranged:

c1exp((o + iw)x) + ca exp((o —iw)x) =
(c1 + c2) exp(oz) cos(wz) + i(c1 — ¢2) exp(ox) sin(wzx) =

czexp(oz) cos(wx) + cq exp(ox) sin(wz).

Thus, the real part of the root becomes the exopnential coefficient, and the
imaginary part becomes the frequency of trigonometric functions.
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Roots of the characteristic equation L22-510

In summary:
@ For real-valued distinct roots 7, then y; = exp(r;x).
@ For a k-fold repeated real-valued root 7q, then
y1 = exp(rox), ..., yr = 2" Lexp(rox).
@ For a complex conjugate root pair » = o + iw, then
y1(z) = exp(oz) cos(wz) and ya(z) = exp(oz) sin(wz).
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Roots of the characteristic equation L22-510

In summary:
o For real-valued distinct roots r;, then y; = exp(r;x).
@ For a k-fold repeated real-valued root 7q, then
y1 = exp(rox), ..., yr = 2" Lexp(rox).
@ For a complex conjugate root pair » = o + iw, then
y1(z) = exp(oz) cos(wz) and ya(z) = exp(oz) sin(wz).

Example (Example 5.3.4)
Find the particular solution of " — 4y’ + 5y = 0, for which y(0) = 1 and
y'(0) = 5.
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Roots of the characteristic equation L22-510

In summary:
o For real-valued distinct roots r;, then y; = exp(r;x).
@ For a k-fold repeated real-valued root 7q, then
y1 = exp(rox), ..., yr = 2" Lexp(rox).
@ For a complex conjugate root pair » = o + iw, then
y1(z) = exp(oz) cos(wz) and ya(z) = exp(oz) sin(wz).

Example (Example 5.3.4)

Find the particular solution of " — 4y’ + 5y = 0, for which y(0) = 1 and
y'(0) = 5.

Example (Example 5.3.5)

Compute the general solution of 3% + 4y = 0.
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