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L22-S01Constant coefficient homogeneous equations

In this section we consider computing the general solution to the DE

any
pnq ` an´1y

pn´1q ` ¨ ¨ ¨ ` a1y
1 ` a0y “ 0,

where a0, a1, . . . , an are constants, and an ‰ 0.

As before, the way forward is to use the ansatz

ypxq “ expprxq,

with r an unknown constant, in the DE. This yields the characteristic
equation,

anr
n ` an´1r

n´1 ` ¨ ¨ ¨ ` a1r ` a0 “
n
ÿ

j“0

ajr
j “ 0,

which is a condition on possible values of r.
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L22-S02Distinct, real-valued roots
If the characteristic equation has distinct, real-valued roots,
r “ r1, r2, . . . , rn, then we can identify n linearly independent solutions:

y1pxq “ exppr1xq, y2pxq “ exppr2xq, ¨ ¨ ¨ ynpxq “ expprnxq.

Therefore, in this case of distinct, real roots, the general solution to the DE
is

Y pxq “
n
ÿ

j“1

cjyjpxq.

Example (Example 5.3.1)
Solve the initial value problem

yp3q ` 3y2 ´ 10y1 “ 0,

yp0q “ 7, y1p0q “ 0, y2p0q “ 70.
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L22-S03Real, repeated roots
The case of real, repeated roots is more delicate. To simplify the situation,
suppose we have a DE

any
pnq ` an´1y

pn´1q ` ¨ ¨ ¨ ` a1y
1 ` a0y “ 0,

whose characteristic equation
n
ÿ

j“0

ajr
j “ 0,

has k ą 1 repeated real roots at r0. I.e., it can be written as

pr ´ r0q
k
n´k
ź

j“1

pr ´ rjq “ 0,

where r1, r2, . . . , rn´k are distinct. The focus is on the repated root r0.

Can we find k linearly independent solutions from the repeated root? Clearly
one solution is

upxq “ exppr0xq,

but we need k ´ 1 more solutions.
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L22-S04Variation of parameters (1/3)

The strategy to compute the remaining solutions appeals to a technique
called variation of parameters.

First note that the distinct roots are distractions. I.e., we can focus on
finding solutions for a simpler characteristic equation and its associated DE:

pr ´ r0q
k
“ 0 ô

„

d

dx
´ r0

k

y “ 0

The idea is as follows: we know that upxq “ c exppr0xq solves the DE for a
constant c.

A reasonable guess then, is that perhaps

wpxq “ ppxq exppr0xq,

for some unknown function ppxq, will solve the equation. What should p
satisfy?
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L22-S05Variation of parameters (2/3)
Note that

„

d

dx
´ r0



wpxq “ p1pxq exppr0xq ` r0ppxq exppr0xq ´ r0ppxq exppr0xq

“ p1pxq exppr0xq

By repeatedly applying this differential operator, then the DE states:

„

d

dx
´ r0

k

wpxq “ ppkqpxq exppr0xq “ 0.

This implies

ppkqpxq “ 0 ùñ ppxq “ c0 ` c1x` ¨ ¨ ¨ ` ck´1x
k´1 “

k´1
ÿ

j“0

cjx
j .

so that wpxq “ ppxq exppr0xq now identifies k linearly independent functions.
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L22-S06Variation of parameters (3/3)

In summary, if the characteristic equation for a DE has k repeated roots with
r “ r0, then the k linearly indpendent solutions associated with this root are:

y1pxq “ exppr0xq,

y2pxq “ x exppr0xq,

y3pxq “ x2 exppr0xq,

¨ ¨ ¨

ykpxq “ xk´1 exppr0xq.

Example (Example 5.3.2)
Compute the general solution to the DE

9yp5q ´ 6yprq ` yp3q “ 0.
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L22-S07Complex valued roots
Recall that if an algebraic equation

n
ÿ

j“0

ajr
j “ 0,

with real-valued coefficients aj has a complex root, then its complex
conjugate is also a root.

I.e., any complex-valued roots r come in conjugate pairs for real-valued
algebraic equations:

r “ σ ˘ iω, i :“
?
´1.

where σ and ω are real numbers.

Before proceeding, we review some basic
facts about complex arithmetic: with x and y real numbers:

z “ x` iy, |z| “
a

x2 ` y2.
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L22-S08Complex valued roots
A fundamental tool is Euler’s identity:

exppiθq “ cos θ ` i sin θ,

and so all complex number have a polar form:

z “ x` iy “ r exppiθq,

where r “ |z| and θ “ arctanpy{xq.

Complex-valued roots are not a problem, in principle: if r “ σ ˘ iω are
conjugate roots of the characteristic equation, then

y1pxq “ expppσ ` iωqxq, y2pxq “ expppσ ´ iωqxq

are two linearly independent solutions to the DE. (Check their linear
independence!)

Example
Compute the general solution to y2 ` y “ 0.
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L22-S09Trigonometric solutions

While complex-valued solutions to DE’s are in principle fine, they are difficult
to physically interpret if the DE models a real-valued system.

Euler’s identity can help rewrite complex exponentials in real-valued form: if
two characteristic equation roots are σ ˘ iω, then a linear combination of
them can be rearranged:

c1 expppσ ` iωqxq ` c2 expppσ ´ iωqxq “

pc1 ` c2q exppσxq cospωxq ` ipc1 ´ c2q exppσxq sinpωxq “

c3 exppσxq cospωxq ` c4 exppσxq sinpωxq.

Thus, the real part of the root becomes the exopnential coefficient, and the
imaginary part becomes the frequency of trigonometric functions.
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L22-S10Roots of the characteristic equation

In summary:
For real-valued distinct roots rj , then yj “ expprjxq.
For a k-fold repeated real-valued root r0, then
y1 “ exppr0xq, . . . , yk “ xk´1 exppr0xq.
For a complex conjugate root pair r “ σ ˘ iω, then
y1pxq “ exppσxq cospωxq and y2pxq “ exppσxq sinpωxq.

Example (Example 5.3.4)
Find the particular solution of y2 ´ 4y1 ` 5y “ 0, for which yp0q “ 1 and
y1p0q “ 5.

Example (Example 5.3.5)
Compute the general solution of yp4q ` 4y “ 0.
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