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L20-S01Second order linear equations

Differential equations for ypxq are equations that involve derivatives of y.
A general nth order DE has the form

Gpx, y, y1, y2, y3, ¨ ¨ ¨ , ypnqq “ 0

A second order DE has the form

Gpx, y, y1, y2q “ 0.

This equation is linear if the dependence of G on y, y1, and y2 is linear.
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L20-S02Second order linear equations

The following are second order linear DE’s:

2y2 ` y ´ exppxq “ 0

y1x2 “ y2 sinx

Apxqy2 `Bpxqy1 ` Cpxqy “ 0

The following are nonlinear DE’s:

y2 ` y2 “ 0

yy2 ` x “ 0

y2 ` sinpyq “ 3
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L20-S03Mass-spring-damper systems
The mass-spring-damper system is a canonical problem in this course.

Example

266 Chapter 5 Higher-Order Linear Differential Equations

If the function F.x/ on the right-hand side of Eq. (2) vanishes identically on
I, then we call Eq. (2) a homogeneous linear equation; otherwise, it is nonhomo-
geneous. For example, the second-order equation

x2y00 C 2xy0 C 3y D cos x

is nonhomogeneous; its associated homogeneous equation is

x2y00 C 2xy0 C 3y D 0:

In general, the homogeneous linear equation associated with Eq. (2) is

A.x/y00 C B.x/y0 C C.x/y D 0: (3)

In case the differential equation in (2) models a physical system, the nonhomoge-
neous term F.x/ frequently corresponds to some external influence on the system.

Remark Note that the meaning of the term “homogeneous” for a second-order linear differ-
ential equation is quite different from its meaning for a first-order differential equation (as in
Section 1.6). Of course, it is not unusual—either in mathematics or in the English language
more generally—for the same word to have different meanings in different contexts.

A Typical Application

Linear differential equations frequently appear as mathematical models of mechan-Spring Mass Dashpot

x (t)
x  = 0

Equilibrium
position

x  > 0

m

FIGURE 5.1.1. A mass–spring–
dashpot system.

ical systems and electrical circuits. For example, suppose that a mass m is attached
both to a spring that exerts on it a force FS and to a dashpot (shock absorber) that
exerts a force FR on the mass (Fig. 5.1.1). Assume that the restoring force FS of
the spring is proportional to the displacement x of the mass from its equilibrium
position and acts opposite to the direction of displacement. Then

FS D !kx (with k > 0)

so FS < 0 if x > 0 (spring stretched) while FS > 0 if x < 0 (spring compressed).
We assume that the dashpot force FR is proportional to the velocity v D dx=dt of
the mass and acts opposite to the direction of motion. Then

FR D !cv D !c
dx

dt
(with c > 0);

so FR < 0 if v > 0 (motion to the right) while FR > 0 if v < 0 (motion to the left).
If FR and FS are the only forces acting on the mass m (Fig. 5.1.2) and itsm

x ,  v  > 0

FRFS

FIGURE 5.1.2. Directions of the
forces acting on m.

resulting acceleration is a D dv=dt , then Newton’s law F D ma gives

mx00 D FS C FRI (4)

that is,

m
d2x

dt2
C c

dx

dt
C kx D 0: (5)

Thus we have a differential equation satisfied by the position function x.t/ of the
massm. This homogeneous second-order linear equation governs the free vibrations
of the mass; we will return to this problem in detail in Section 5.4.

If, in addition to FS and FR, the mass m is acted on by an external force
F.t/—which must then be added to the right-hand side in Eq. (4)—the resulting
equation is

m
d2x

dt2
C c

dx

dt
C kx D F.t/: (6)

This nonhomogeneous linear differential equation governs the forced vibrations of
the mass under the influence of the external force F.t/.

The horizontal motion of a block with mass m is governed by a restorative
spring force (spring constant k) and a motion damper (damping coefficient c).
The differential equation describing the position xptq of the block is

mx2 ` cx1 ` kx “ F ptq,

where F ptq accounts for any external forces acting on the block.
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L20-S04Homogeneous equations
A general second order DE has the form

Apxqy2 `Bpxqy1 ` Cpxq “ F pxq,

where A, B, C, and F are arbitrary functions (A ı 0).

The equation is homogeneous if F ” 0.
The equation is nonhomogeneous if F ı 0.

While the forms of A, B, and C are typically dependent on physics from
which the DE is derived, F is typically an external forcing or agent in the
system.

It is convenient to assume that Apxq ‰ 0 for every x in some interval I.
Then an equivalent form for a general second order linear DE is

y2pxq ` ppxqy1 ` qpxqy “ fpxq.
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L20-S05Superposition
There is a very useful property that linearity for homogeneous equations
yields: consider

y2 ` ppxqy1 ` qpxqy “ 0.

If y1pxq and y2pxq are both functions that solve the homogeneous DE above,
then

ypxq “ c1y1pxq ` c2y2pxq,

also solves the DE, for any constants c1 and c2.

This property is called superposition.

Example
Verify that y1pxq “ ex and y2pxq “ e´x both solve the DE

y2 ´ y “ 0.

Show also that ypxq “ 3ex ` 4e´x also solves this DE.
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L20-S06Existence and uniqueness
The linear property of DE’s yields the very important properties of existence
and uniqueness:

Suppose that ppxq, qpxq, and fpxq are all continuous functions on some open
interval I that contains the point x “ a. Then for any constants b0 and b1,
the initial value problem

y2 ` ppxqy1 ` qpxqy “ fpxq, ypaq “ b0, y1paq “ b1,

has a unique solution ypxq on the interval I.

Note: the DE without the initial data has solutions but they are not unique.
(This can be seen from superposition.)

Verify that y1pxq “ cosx and y2pxq “ sinpxq are both solutions to the DE

y2 ` y “ 0

Use superposition to compute the unique solution to the DE above paired
with the initial data yp0q “ 3, y1p0q “ ´4.
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L20-S07A little linear algebra

We will consider vector spaces of functions. I.e., each point in a vector space
is a function.
This means that the “zero vector" in this context is the zero function
ypxq “ 0.

In this context, two functions (i.e., vectors!) y1pxq and y2pxq are linearly
independent if and only if the equation

c1y1pxq ` c2y2pxq “ 0, for all x in I,

is true only when c1 “ c2 “ 0. (Otherwise, they are linearly dependent.)

Example
Determine whether or not f1pxq “ exppxq and f2pxq “ expp´xq are linearly
indpendent on I “ R.
What about g1pxq “ sinp2xq and g2pxq “ sinx cosx?
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L20-S08Wronskians
Consider the initial value problem with the homogeneous DE

y2 ` ppxqy1 ` qpxqy “ 0, ypaq “ b0, y1paq “ b1.

Suppose that y1pxq and y2pxq are some solutions to the DE. Then by
superposition we can compute a solution if the linear system for pc1, c2q

c1y1paq ` c2y2paq “ b0

c1y
1
1paq ` c2y

1
2paq “ b1

has a solution.

Recall: This happens if and only if the we have the following condition on the
determinant of the associated matrix:

ˇ

ˇ

ˇ

ˇ

y1paq y2paq
y11paq y12paq

ˇ

ˇ

ˇ

ˇ

‰ 0

This determinant, as a function of x is called the Wronskian W :

W pf, gq :“ det

ˆ

f g
f 1 g1

˙

“ fpxqg1pxq ´ f 1pxqgpxq.
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L20-S09The Wronskian and dependence
Note that the Wronskian (determinant) W pf, gq vanishes (equals the zero
function) only when f and g are linearly dependent.

This results in a rather strong statement about solutions to DE’s and the
Wronskian:

Consider two solutions y1pxq and y2pxq to the homogeneous DE

y2 ` ppxqy1 ` qpxqy “ 0,

where p and q are continuous on an open interval I.
y1 and y2 are linearly dependent if and only if W py1, y2qpxq “ 0 for all x
in I.
If y1 and y2 are linearly independent if and only if W py1, y2qpxq ‰ 0 for
all x in I.

In the latter case, any solution Y pxq to the DE has the form

Y pxq “ c1y1pxq ` c2y2pxq

for some constants c1 and c2, and so Y pxq is called the general solution to
the DE.
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L20-S10Constant coefficients DE’s
If we specialize to a certain subclass of second order linear DE’s, we can
compute explicit solutions.

A second order linear DE of the form

ay2 ` by1 ` cy “ 0,

for some constants a, b, and c, is a constant coefficient DE. (Also: second
order, linear, homogeneous.)

We compute solutions to this equation by inspection: if we use the ansatz

ypxq “ expprxq,

for an unknown constant r, then we find that this is a solution only when

ar2 ` br ` c “ 0.
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L20-S11The characteristic equation

ay2 ` by1 ` cy “ 0,

ar2 ` br ` c “ 0.

This quadratic equation for r is called the characteristic equation for the
DE.

If the two roots of this equation are real-valued and distinct, say r “ r1
and r “ r2, then

y1pxq “ exppr1xq, y2pxq “ exppr2xq,

are a pair of linearly independent solutions.

Thus, this identifies the general solution, and the solution space for this DE
is spanty1, y2u with basis ty1, y2u.
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L20-S12Examples
Example
Compute general solutions to the DE’s:

y2 ´ y “ 0

y2 ` 2y1 “ 0

If the roots of the characteristic equation are real-valued and repeated, say
r1 “ r2, then of course y1pxq “ exppr1xq is one solution. By inspection, we
have that

y2pxq “ x exppr1xq

is another solution, and is clearly linearly independent from y1.

Example
Compute general solution to the DE

y2 ` 2y1 ` y “ 0
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