Second order linear equations

MATH 2250 Lecture 20
Book section 5.1

October 14, 2019

Second order linear equations

Differential equations for $y(x)$ are equations that involve derivatives of y. A general nth order DE has the form

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \cdots, y^{(n)}\right)=0
$$

Second order linear equations

Differential equations for $y(x)$ are equations that involve derivatives of y. A general nth order DE has the form

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \cdots, y^{(n)}\right)=0
$$

A second order DE has the form

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 .
$$

This equation is linear if the dependence of G on y, y^{\prime}, and $y^{\prime \prime}$ is linear.

Second order linear equations

The following are second order linear DE's:

$$
\begin{aligned}
2 y^{\prime \prime}+y-\exp (x) & =0 \\
y^{\prime} x^{2} & =y^{\prime \prime} \sin x \\
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y & =0
\end{aligned}
$$

Second order linear equations

The following are second order linear DE's:

$$
\begin{aligned}
2 y^{\prime \prime}+y-\exp (x) & =0 \\
y^{\prime} x^{2} & =y^{\prime \prime} \sin x \\
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y & =0
\end{aligned}
$$

The following are nonlinear DE's:

$$
\begin{array}{r}
y^{\prime \prime}+y^{2}=0 \\
y y^{\prime \prime}+x=0 \\
y^{\prime \prime}+\sin (y)=3
\end{array}
$$

Mass-spring-damper systems

The mass-spring-damper system is a canonical problem in this course.

Example

The horizontal motion of a block with mass m is governed by a restorative spring force (spring constant k) and a motion damper (damping coefficient c). The differential equation describing the position $x(t)$ of the block is

$$
m x^{\prime \prime}+c x^{\prime}+k x=F(t)
$$

where $F(t)$ accounts for any external forces acting on the block.

Homogeneous equations

A general second order DE has the form

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x)=F(x),
$$

where A, B, C, and F are arbitrary functions $(A \not \equiv 0)$.

Homogeneous equations

A general second order DE has the form

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x)=F(x)
$$

where A, B, C, and F are arbitrary functions $(A \not \equiv 0)$.
The equation is homogeneous if $F \equiv 0$.
The equation is nonhomogeneous if $F \not \equiv 0$.
While the forms of A, B, and C are typically dependent on physics from which the DE is derived, F is typically an external forcing or agent in the system.

Homogeneous equations

A general second order DE has the form

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x)=F(x)
$$

where A, B, C, and F are arbitrary functions $(A \not \equiv 0)$.
The equation is homogeneous if $F \equiv 0$.
The equation is nonhomogeneous if $F \not \equiv 0$.
While the forms of A, B, and C are typically dependent on physics from which the DE is derived, F is typically an external forcing or agent in the system.

It is convenient to assume that $A(x) \neq 0$ for every x in some interval I.
Then an equivalent form for a general second order linear DE is

$$
y^{\prime \prime}(x)+p(x) y^{\prime}+q(x) y=f(x)
$$

Superposition

There is a very useful property that linearity for homogeneous equations yields: consider

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

If $y_{1}(x)$ and $y_{2}(x)$ are both functions that solve the homogeneous DE above, then

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

also solves the DE , for any constants c_{1} and c_{2}.
This property is called superposition.

Superposition

There is a very useful property that linearity for homogeneous equations yields: consider

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

If $y_{1}(x)$ and $y_{2}(x)$ are both functions that solve the homogeneous DE above, then

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

also solves the DE , for any constants c_{1} and c_{2}.
This property is called superposition.

Example

Verify that $y_{1}(x)=e^{x}$ and $y_{2}(x)=e^{-x}$ both solve the DE

$$
y^{\prime \prime}-y=0 .
$$

Show also that $y(x)=3 e^{x}+4 e^{-x}$ also solves this DE.

Existence and uniqueness

The linear property of DE's yields the very important properties of existence and uniqueness:

Suppose that $p(x), q(x)$, and $f(x)$ are all continuous functions on some open interval I that contains the point $x=a$. Then for any constants b_{0} and b_{1}, the initial value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x), \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

has a unique solution $y(x)$ on the interval I.

Existence and uniqueness

The linear property of DE's yields the very important properties of existence and uniqueness:

Suppose that $p(x), q(x)$, and $f(x)$ are all continuous functions on some open interval I that contains the point $x=a$. Then for any constants b_{0} and b_{1}, the initial value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x), \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

has a unique solution $y(x)$ on the interval I.
Note: the DE without the initial data has solutions but they are not unique. (This can be seen from superposition.)

Existence and uniqueness

The linear property of DE's yields the very important properties of existence and uniqueness:

Suppose that $p(x), q(x)$, and $f(x)$ are all continuous functions on some open interval I that contains the point $x=a$. Then for any constants b_{0} and b_{1}, the initial value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x), \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

has a unique solution $y(x)$ on the interval I.
Note: the DE without the initial data has solutions but they are not unique. (This can be seen from superposition.)

Verify that $y_{1}(x)=\cos x$ and $y_{2}(x)=\sin (x)$ are both solutions to the DE

$$
y^{\prime \prime}+y=0
$$

Use superposition to compute the unique solution to the DE above paired with the initial data $y(0)=3, y^{\prime}(0)=-4$.

A little linear algebra

We will consider vector spaces of functions. I.e., each point in a vector space is a function.
This means that the "zero vector" in this context is the zero function $y(x)=0$.

In this context, two functions (i.e., vectors!) $y_{1}(x)$ and $y_{2}(x)$ are linearly independent if and only if the equation

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0, \quad \text { for all } x \text { in } I
$$

is true only when $c_{1}=c_{2}=0$. (Otherwise, they are linearly dependent.)

A little linear algebra

We will consider vector spaces of functions. I.e., each point in a vector space is a function.
This means that the "zero vector" in this context is the zero function $y(x)=0$.

In this context, two functions (i.e., vectors!) $y_{1}(x)$ and $y_{2}(x)$ are linearly independent if and only if the equation

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0, \quad \text { for all } x \text { in } I
$$

is true only when $c_{1}=c_{2}=0$. (Otherwise, they are linearly dependent.)

Example

Determine whether or not $f_{1}(x)=\exp (x)$ and $f_{2}(x)=\exp (-x)$ are linearly indpendent on $I=\mathbb{R}$.
What about $g_{1}(x)=\sin (2 x)$ and $g_{2}(x)=\sin x \cos x$?

Wronskians
Consider the initial value problem with the homogeneous DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

Suppose that $y_{1}(x)$ and $y_{2}(x)$ are some solutions to the DE. Then by superposition we can compute a solution if the linear system for $\left(c_{1}, c_{2}\right)$

$$
\begin{aligned}
& c_{1} y_{1}(a)+c_{2} y_{2}(a)=b_{0} \\
& c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=b_{1}
\end{aligned}
$$

has a solution.

Consider the initial value problem with the homogeneous DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

Suppose that $y_{1}(x)$ and $y_{2}(x)$ are some solutions to the DE. Then by superposition we can compute a solution if the linear system for $\left(c_{1}, c_{2}\right)$

$$
\begin{aligned}
& c_{1} y_{1}(a)+c_{2} y_{2}(a)=b_{0} \\
& c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=b_{1}
\end{aligned}
$$

has a solution.
Recall: This happens if and only if the we have the following condition on the determinant of the associated matrix:

$$
\left|\begin{array}{ll}
y_{1}(a) & y_{2}(a) \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right| \neq 0
$$

Consider the initial value problem with the homogeneous DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

Suppose that $y_{1}(x)$ and $y_{2}(x)$ are some solutions to the DE. Then by superposition we can compute a solution if the linear system for $\left(c_{1}, c_{2}\right)$

$$
\begin{aligned}
& c_{1} y_{1}(a)+c_{2} y_{2}(a)=b_{0} \\
& c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=b_{1}
\end{aligned}
$$

has a solution.
Recall: This happens if and only if the we have the following condition on the determinant of the associated matrix:

$$
\left|\begin{array}{cc}
y_{1}(a) & y_{2}(a) \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right| \neq 0
$$

This determinant, as a function of x is called the Wronskian W :

$$
W(f, g):=\operatorname{det}\left(\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right)=f(x) g^{\prime}(x)-f^{\prime}(x) g(x) .
$$

The Wronskian and dependence

Note that the Wronskian (determinant) $W(f, g)$ vanishes (equals the zero function) only when f and g are linearly dependent.

This results in a rather strong statement about solutions to DE's and the Wronskian:

The Wronskian and dependence

Note that the Wronskian (determinant) $W(f, g)$ vanishes (equals the zero function) only when f and g are linearly dependent.

This results in a rather strong statement about solutions to DE's and the Wronskian:

Consider two solutions $y_{1}(x)$ and $y_{2}(x)$ to the homogeneous DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,
$$

where p and q are continuous on an open interval I.

- y_{1} and y_{2} are linearly dependent if and only if $W\left(y_{1}, y_{2}\right)(x)=0$ for all x in I.
- If y_{1} and y_{2} are linearly independent if and only if $W\left(y_{1}, y_{2}\right)(x) \neq 0$ for all x in I.
In the latter case, any solution $Y(x)$ to the DE has the form

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

for some constants c_{1} and c_{2}, and so $Y(x)$ is called the general solution to the DE.

Constant coefficients DE's

If we specialize to a certain subclass of second order linear DE's, we can compute explicit solutions.

A second order linear DE of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

for some constants a, b, and c, is a constant coefficient DE. (Also: second order, linear, homogeneous.)

Constant coefficients DE's

If we specialize to a certain subclass of second order linear DE's, we can compute explicit solutions.

A second order linear DE of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

for some constants a, b, and c, is a constant coefficient DE. (Also: second order, linear, homogeneous.)

We compute solutions to this equation by inspection: if we use the ansatz

$$
y(x)=\exp (r x)
$$

for an unknown constant r, then we find that this is a solution only when

$$
a r^{2}+b r+c=0
$$

The characteristic equation

$$
\begin{array}{r}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
a r^{2}+b r+c=0
\end{array}
$$

This quadratic equation for r is called the characteristic equation for the DE.

If the two roots of this equation are real-valued and distinct, say $r=r_{1}$ and $r=r_{2}$, then

$$
y_{1}(x)=\exp \left(r_{1} x\right), \quad y_{2}(x)=\exp \left(r_{2} x\right)
$$

are a pair of linearly independent solutions.

$$
\begin{array}{r}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
a r^{2}+b r+c=0
\end{array}
$$

This quadratic equation for r is called the characteristic equation for the DE.

If the two roots of this equation are real-valued and distinct, say $r=r_{1}$ and $r=r_{2}$, then

$$
y_{1}(x)=\exp \left(r_{1} x\right), \quad y_{2}(x)=\exp \left(r_{2} x\right)
$$

are a pair of linearly independent solutions.
Thus, this identifies the general solution, and the solution space for this DE is $\operatorname{span}\left\{y_{1}, y_{2}\right\}$ with basis $\left\{y_{1}, y_{2}\right\}$.

Examples

Example

Compute general solutions to the DE's:

$$
\begin{array}{r}
y^{\prime \prime}-y=0 \\
y^{\prime \prime}+2 y^{\prime}=0
\end{array}
$$

Examples

Example

Compute general solutions to the DE's:

$$
\begin{array}{r}
y^{\prime \prime}-y=0 \\
y^{\prime \prime}+2 y^{\prime}=0
\end{array}
$$

If the roots of the characteristic equation are real-valued and repeated, say $r_{1}=r_{2}$, then of course $y_{1}(x)=\exp \left(r_{1} x\right)$ is one solution. By inspection, we have that

$$
y_{2}(x)=x \exp \left(r_{1} x\right)
$$

is another solution, and is clearly linearly independent from y_{1}.

Examples

Example

Compute general solutions to the DE's:

$$
\begin{array}{r}
y^{\prime \prime}-y=0 \\
y^{\prime \prime}+2 y^{\prime}=0
\end{array}
$$

If the roots of the characteristic equation are real-valued and repeated, say $r_{1}=r_{2}$, then of course $y_{1}(x)=\exp \left(r_{1} x\right)$ is one solution. By inspection, we have that

$$
y_{2}(x)=x \exp \left(r_{1} x\right)
$$

is another solution, and is clearly linearly independent from y_{1}.

Example

Compute general solution to the DE

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

