Linear independence

MATH 2250 Lecture 18 Book section 4.3

September 30, 2019

Vector spaces

We've seen notions of linear independence in \mathbb{R}^3 and $\mathbb{R}^n.$ This section: we investigate this in more detail.

We've seen notions of linear independence in \mathbb{R}^3 and \mathbb{R}^n . This section: we investigate this in more detail.

If v_1, \ldots, v_k are a set of given k vectors in in \mathbb{R}^n , then another vector w is a **linear combination** of v_1, \ldots, v_k if there are constants c_1, \ldots, c_k such that

$$\sum_{j=1}^k c_j \boldsymbol{v}_j = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k = \boldsymbol{w}.$$

Note that no assumptions about the vectors v_j is made. There is also no prescribed relationship between k and n.

Examples

Example (Example 4.3.1)

Determine whether or not w = (2, -6, 3) in \mathbb{R}^3 is a linear combination of $v_1 = (1, -2, -1)$ and $v_2 = (3, -5, 4)$.

Examples

Example (Example 4.3.1)

Determine whether or not w = (2, -6, 3) in \mathbb{R}^3 is a linear combination of $v_1 = (1, -2, -1)$ and $v_2 = (3, -5, 4)$.

Example

Determine whether or not w = (-7,7,11) in \mathbb{R}^3 is a linear combination of $v_1 = (1,2,1)$, $v_2 = (-4,-1,2)$, and $v_3 = (-3,1,3)$.

Spanning sets

Given a vector space V (say $V = \mathbb{R}^n$), we are interested in determining when a set of vectors "represents" the vector space V.

We say that the vectors v_1, \ldots, v_k span the vector space V if every vector in V is a linear combination of v_1, \ldots, v_k .

Under the above condition, we also say that this set of vectors is a **spanning** set for V.

Spanning sets

Given a vector space V (say $V = \mathbb{R}^n$), we are interested in determining when a set of vectors "represents" the vector space V.

We say that the vectors v_1, \ldots, v_k span the vector space V if every vector in V is a linear combination of v_1, \ldots, v_k .

Under the above condition, we also say that this set of vectors is a **spanning** set for V.

Example

In \mathbb{R}^n , the canonical example of a spanning set are the cardinal unit vectors:

$$e_1 = (1, 0, 0, \dots 0, 0)$$

$$e_2 = (0, 1, 0, \dots 0, 0)$$

:

$$e_n = (0, 0, 0, \dots 0, 1).$$

The vectors e_1, \ldots, e_n span \mathbb{R}^n since every vector in \mathbb{R}^n is a linear combination of these.

MATH 2250-004 - U. Utah

Subspaces and span

L18-S04

Let V be a vector space containing $v_1, \ldots v_k$.

Subspaces and span

L18-S04

Let V be a vector space containing $v_1, \ldots v_k$.

Let W be the set of *all* linear combinations of $v_1, \ldots v_k$.

Then: W is a subspace of V. (In particular, W is a vector space.)

Subspaces and span

L18-S04

Let V be a vector space containing $v_1, \ldots v_k$.

Let W be the set of *all* linear combinations of $v_1, \ldots v_k$.

Then: W is a subspace of V. (In particular, W is a vector space.)

Let $S = \{v_1, \ldots, v_k\}$ be the set of these vectors.

The following are all equivalent notation/terminology:

- $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k$ span W
- $\bullet \ S$ is a spanning set for W
- $\operatorname{span}(S) = W$
- span{ $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k$ } = W.

Spanning sets and linear independence

If v_1, \ldots, v_k spans W, then every vector in W is expressible in coordinates of v_1, \ldots, v_k .

If $\boldsymbol{w} \in W$, by definition there are constants c_1, \ldots, c_k such that

$$\boldsymbol{w} = \sum_{j=1}^k c_j \boldsymbol{v}_j.$$

The vector (c_1, \ldots, c_k) are the **coordinates** or the **coordinate** representation of w in v_1, \ldots, v_k .

When can we guarantee that coordinate representations are unique?

L18-S05

Spanning sets and linear independence

If v_1, \ldots, v_k spans W, then every vector in W is expressible in coordinates of v_1, \ldots, v_k .

If $\boldsymbol{w} \in W$, by definition there are constants c_1, \ldots, c_k such that

$$\boldsymbol{w} = \sum_{j=1}^k c_j \boldsymbol{v}_j.$$

The vector (c_1, \ldots, c_k) are the coordinates or the coordinate representation of w in v_1, \ldots, v_k .

When can we guarantee that coordinate representations are unique?

Recall that $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k$ are *linearly independent* if the equation

$$\sum_{j=1}^k a_j \boldsymbol{v}_j = \boldsymbol{0},$$

is true only for $a_1 = \cdots = a_n = 0$. (Otherwise they are linearly dependent.)

L18-S05

Spanning sets and linear independence

If v_1, \ldots, v_k spans W, then every vector in W is expressible in coordinates of v_1, \ldots, v_k .

If $\boldsymbol{w} \in W$, by definition there are constants c_1, \ldots, c_k such that

$$\boldsymbol{w} = \sum_{j=1}^k c_j \boldsymbol{v}_j.$$

The vector (c_1, \ldots, c_k) are the coordinates or the coordinate representation of w in v_1, \ldots, v_k .

When can we guarantee that coordinate representations are unique?

Recall that $oldsymbol{v}_1,\ldots,oldsymbol{v}_k$ are *linearly independent* if the equation

$$\sum_{j=1}^k a_j \boldsymbol{v}_j = \boldsymbol{0},$$

is true only for $a_1 = \cdots = a_n = 0$. (Otherwise they are linearly dependent.) The coordinate representation of elements in W by the spanning set $\{v_1, \ldots, v_k\}$ is unique if and only if v_1, \ldots, v_k are linearly independent.

L18-S05

Spanning sets and linear independence in \mathbb{R}^n L18-S06

In \mathbb{R}^n , we have a simple way to test if a set of vectors is linearly independent:

Theorem

The vectors $v_1, \ldots v_n$ in \mathbb{R}^n are linearly independent if and only if $det(\mathbf{A}) \neq 0$, where \mathbf{A} is the $n \times n$ matrix:

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{pmatrix}$$

Spanning sets and linear independence in \mathbb{R}^n L18-S06

In $\mathbb{R}^n,$ we have a simple way to test if a set of vectors is linearly independent: Theorem

The vectors $v_1, \ldots v_n$ in \mathbb{R}^n are linearly independent if and only if $det(\mathbf{A}) \neq 0$, where \mathbf{A} is the $n \times n$ matrix:

$$\boldsymbol{A} = \left(\begin{array}{cccc} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{array} \right)$$

Note that more than n vectors in \mathbb{R}^n must be linearly dependent. (The reduced Echelon form for the associated A is not the identity.)

Fewer than n vectors in \mathbb{R}^n may or may not be linearly independent.