Linear independence

MATH 2250 Lecture 18

Book section 4.3

September 30, 2019

Linear combinations

We've seen notions of linear independence in \mathbb{R}^{3} and \mathbb{R}^{n}. This section: we investigate this in more detail.

Linear combinations

We've seen notions of linear independence in \mathbb{R}^{3} and \mathbb{R}^{n}. This section: we investigate this in more detail.

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are a set of given k vectors in in \mathbb{R}^{n}, then another vector \boldsymbol{w} is a linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ if there are constants c_{1}, \ldots, c_{k} such that

$$
\sum_{j=1}^{k} c_{j} \boldsymbol{v}_{j}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}=\boldsymbol{w}
$$

Note that no assumptions about the vectors \boldsymbol{v}_{j} is made.
There is also no prescribed relationship between k and n.

Examples

Example (Example 4.3.1)

Determine whether or not $\boldsymbol{w}=(2,-6,3)$ in \mathbb{R}^{3} is a linear combination of $\boldsymbol{v}_{1}=(1,-2,-1)$ and $\boldsymbol{v}_{2}=(3,-5,4)$.

Examples

Example (Example 4.3.1)

Determine whether or not $\boldsymbol{w}=(2,-6,3)$ in \mathbb{R}^{3} is a linear combination of $\boldsymbol{v}_{1}=(1,-2,-1)$ and $\boldsymbol{v}_{2}=(3,-5,4)$.

Example

Determine whether or not $\boldsymbol{w}=(-7,7,11)$ in \mathbb{R}^{3} is a linear combination of $\boldsymbol{v}_{1}=(1,2,1), \boldsymbol{v}_{2}=(-4,-1,2)$, and $\boldsymbol{v}_{3}=(-3,1,3)$.

Spanning sets

Given a vector space V (say $V=\mathbb{R}^{n}$), we are interested in determining when a set of vectors "represents" the vector space V.

We say that the vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ span the vector space V if every vector in V is a linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
Under the above condition, we also say that this set of vectors is a spanning set for V.

Spanning sets

Given a vector space V (say $V=\mathbb{R}^{n}$), we are interested in determining when a set of vectors "represents" the vector space V.

We say that the vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ span the vector space V if every vector in V is a linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
Under the above condition, we also say that this set of vectors is a spanning set for V.

Example

In \mathbb{R}^{n}, the canonical example of a spanning set are the cardinal unit vectors:

$$
\begin{aligned}
\boldsymbol{e}_{1} & =(1,0,0, \cdots 0,0) \\
\boldsymbol{e}_{2} & =(0,1,0, \cdots 0,0) \\
& \vdots \\
\boldsymbol{e}_{n} & =(0,0,0, \cdots 0,1)
\end{aligned}
$$

The vectors $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ span \mathbb{R}^{n} since every vector in \mathbb{R}^{n} is a linear combination of these.

Subspaces and span

L18-S04

Let V be a vector space containing $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}$.

Subspaces and span

Let V be a vector space containing $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}$.
Let W be the set of all linear combinations of $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}$.
Then: W is a subspace of V. (In particular, W is a vector space.)

Subspaces and span

Let V be a vector space containing $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}$.
Let W be the set of all linear combinations of $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}$.
Then: W is a subspace of V. (In particular, W is a vector space.)
Let $S=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ be the set of these vectors.
The following are all equivalent notation/terminology:

- $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ span W
- S is a spanning set for W
- $\operatorname{span}(S)=W$
- $\operatorname{span}\left\{\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}\right\}=W$.

Spanning sets and linear independence

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ spans W, then every vector in W is expressible in coordinates of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
If $\boldsymbol{w} \in W$, by definition there are constants c_{1}, \ldots, c_{k} such that

$$
\boldsymbol{w}=\sum_{j=1}^{k} c_{j} \boldsymbol{v}_{j} .
$$

The vector $\left(c_{1}, \ldots, c_{k}\right)$ are the coordinates or the coordinate representation of \boldsymbol{w} in $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.

When can we guarantee that coordinate representations are unique?

Spanning sets and linear independence

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ spans W, then every vector in W is expressible in coordinates of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
If $\boldsymbol{w} \in W$, by definition there are constants c_{1}, \ldots, c_{k} such that

$$
\boldsymbol{w}=\sum_{j=1}^{k} c_{j} \boldsymbol{v}_{j}
$$

The vector $\left(c_{1}, \ldots, c_{k}\right)$ are the coordinates or the coordinate representation of \boldsymbol{w} in $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.

When can we guarantee that coordinate representations are unique?
Recall that $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are linearly independent if the equation

$$
\sum_{j=1}^{k} a_{j} \boldsymbol{v}_{j}=\mathbf{0}
$$

is true only for $a_{1}=\cdots=a_{n}=0$. (Otherwise they are linearly dependent.)

Spanning sets and linear independence

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ spans W, then every vector in W is expressible in coordinates of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
If $\boldsymbol{w} \in W$, by definition there are constants c_{1}, \ldots, c_{k} such that

$$
\boldsymbol{w}=\sum_{j=1}^{k} c_{j} \boldsymbol{v}_{j} .
$$

The vector $\left(c_{1}, \ldots, c_{k}\right)$ are the coordinates or the coordinate representation of \boldsymbol{w} in $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.

When can we guarantee that coordinate representations are unique?
Recall that $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are linearly independent if the equation

$$
\sum_{j=1}^{k} a_{j} \boldsymbol{v}_{j}=\mathbf{0}
$$

is true only for $a_{1}=\cdots=a_{n}=0$. (Otherwise they are linearly dependent.)
The coordinate representation of elements in W by the spanning set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ is unique if and only if $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are linearly independent.

Spanning sets and linear independence in \mathbb{R}^{n}

In \mathbb{R}^{n}, we have a simple way to test if a set of vectors is linearly independent:
Theorem
The vectors $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{n}$ in \mathbb{R}^{n} are linearly independent if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$, where \boldsymbol{A} is the $n \times n$ matrix:

$$
\boldsymbol{A}=\left(\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right)
$$

Spanning sets and linear independence in \mathbb{R}^{n}

In \mathbb{R}^{n}, we have a simple way to test if a set of vectors is linearly independent:

Theorem

The vectors $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{n}$ in \mathbb{R}^{n} are linearly independent if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$, where \boldsymbol{A} is the $n \times n$ matrix:

$$
\boldsymbol{A}=\left(\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right)
$$

Note that more than n vectors in \mathbb{R}^{n} must be linearly dependent. (The reduced Echelon form for the associated \boldsymbol{A} is not the identity.)

Fewer than n vectors in \mathbb{R}^{n} may or may not be linearly independent.

