L17-S00

The vector space \mathbb{R}^n

MATH 2250 Lecture 17 Book section 4.2

September 25, 2019

Vector spaces

All of the geometric intuition about vectors and subspaces in \mathbb{R}^3 carries over almost verbatim to \mathbb{R}^n , the space of *n*-vectors for any $n \ge 1$.

All of the geometric intuition about vectors and subspaces in \mathbb{R}^3 carries over almost verbatim to \mathbb{R}^n , the space of *n*-vectors for any $n \ge 1$.

An *n*-tuple is an ordered set of *n* scalars (x_1, \ldots, x_n) . I.e., it's an *n*-vector.

Sums of n-tuples and multiplication by scalars works just like in \mathbb{R}^3 : elementwise.

All of the geometric intuition about vectors and subspaces in \mathbb{R}^3 carries over almost verbatim to \mathbb{R}^n , the space of *n*-vectors for any $n \ge 1$.

An *n*-tuple is an ordered set of *n* scalars (x_1, \ldots, x_n) . I.e., it's an *n*-vector.

Sums of n-tuples and multiplication by scalars works just like in \mathbb{R}^3 : elementwise.

And because of the behavior of *n*-tuple sums and multiplication by scalars, then the set of all *n*-tuples, \mathbb{R}^n , is a vector space.

\mathbb{R}^n is a vector space

L17-S02

The set of points \mathbb{R}^n is a vector space:

If u, v, and w are vectors in \mathbb{R}^n and r and s are any scalars, then:

The properties above are also practically and mathematically important.

0)

Since \mathbb{R}^n is a vector space, we have the concept of *subspaces*.

Given a vector space V, a **subspace** is any subset of V satisfying the definition of a vector space.

I.e., is a subset such that (a) adding two elements in the subspace together results in something in the same subspace and (b) multiplying any element by a scalar results in a vector again in the subspace.

Since \mathbb{R}^n is a vector space, we have the concept of *subspaces*.

Given a vector space V, a **subspace** is any subset of V satisfying the definition of a vector space.

I.e., is a subset such that (a) adding two elements in the subspace together results in something in the same subspace and (b) multiplying any element by a scalar results in a vector again in the subspace.

If W is a subspace of V, and \boldsymbol{u} and \boldsymbol{v} are any elements in W, then

- $\boldsymbol{u} + \boldsymbol{v}$ is also in W
- cu is also in W for any scalar c.

Subspaces examples

L17-S04

Example

In \mathbb{R}^4 , is the set of tuples (x_1, x_2, x_3, x_4) satisfying **both**

$$x_1 + 3x_3 + 4x_4 = 0$$

-x_1 - 2x_2 + x_3 + x_4 = 0

a subspace?

Subspaces examples

L17-S04

Example

In \mathbb{R}^4 , is the set of tuples (x_1, x_2, x_3, x_4) satisfying **both**

$$x_1 + 3x_3 + 4x_4 = 0$$
$$-x_1 - 2x_2 + x_3 + x_4 = 0$$

a subspace?

Example

Let A be an $m \times n$ matrix. Let V be the set of vectors x in \mathbb{R}^n satisfying

$$Ax = 0.$$

Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x} = (x_1, \dots, x_n)$ of \mathbb{R}^n such that $x_1 \ge 0$. Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x} = (x_1, \dots, x_n)$ of \mathbb{R}^n such that $x_1 \ge 0$. Is V a subspace?

Example

Let V be the set of vectors $\pmb{x}=(x_1,x_2)$ of \mathbb{R}^n such that $x_1^2+x_2^2=1.$ Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x} = (x_1, \dots, x_n)$ of \mathbb{R}^n such that $x_1 \ge 0$. Is V a subspace?

Example

Let V be the set of vectors $\pmb{x}=(x_1,x_2)$ of \mathbb{R}^n such that $x_1^2+x_2^2=1.$ Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x} = (x_1, x_2, x_3)$ of \mathbb{R}^3 such that $x_1 + 2x_2 - 3x_3 = 1$. Is V a subspace?

Vector spaces can be *very* general spaces of objects. For example, elements (points) in a vector space can be entire functions.

Vector spaces can be *very* general spaces of objects. For example, elements (points) in a vector space can be entire functions.

Example

Let V be the set of functions $f(\cdot)$ that map \mathbb{R} to \mathbb{R} . Is V a vector space?

Vector spaces can be *very* general spaces of objects. For example, elements (points) in a vector space can be entire functions.

Example

Let V be the set of functions $f(\cdot)$ that map \mathbbm{R} to $\mathbbm{R}.$ Is V a vector space?

Example

Let V be the set of functions $f(\cdot)$ that map \mathbb{R} to \mathbb{R} . Let W be the set of functions in V that are polynomials of degree 3 or less. Is W a subspace of V?