The vector space \mathbb{R}^{n}

MATH 2250 Lecture 17
Book section 4.2

September 25, 2019

L17-S01

All of the geometric intuition about vectors and subspaces in \mathbb{R}^{3} carries over almost verbatim to \mathbb{R}^{n}, the space of n-vectors for any $n \geqslant 1$.

All of the geometric intuition about vectors and subspaces in \mathbb{R}^{3} carries over almost verbatim to \mathbb{R}^{n}, the space of n-vectors for any $n \geqslant 1$.

An n-tuple is an ordered set of n scalars $\left(x_{1}, \ldots, x_{n}\right)$. I.e., it's an n-vector.
Sums of n-tuples and multiplication by scalars works just like in \mathbb{R}^{3} : elementwise.

All of the geometric intuition about vectors and subspaces in \mathbb{R}^{3} carries over almost verbatim to \mathbb{R}^{n}, the space of n-vectors for any $n \geqslant 1$.

An n-tuple is an ordered set of n scalars $\left(x_{1}, \ldots, x_{n}\right)$. I.e., it's an n-vector.
Sums of n-tuples and multiplication by scalars works just like in \mathbb{R}^{3} : elementwise.

And because of the behavior of n-tuple sums and multiplication by scalars, then the set of all n-tuples, \mathbb{R}^{n}, is a vector space.

\mathbb{R}^{n} is a vector space

The set of points \mathbb{R}^{n} is a vector space:
If $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are vectors in \mathbb{R}^{n} and r and s are any scalars, then:

- $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
- $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}$
- $\boldsymbol{u}+\mathbf{0}=\mathbf{0}+\boldsymbol{u}=\boldsymbol{u}(\mathbf{0}$ a vector with all entries 0$)$
- $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$
- $r(\boldsymbol{u}+\boldsymbol{v})=r \boldsymbol{u}+r \boldsymbol{v}$
- $(r+s) \boldsymbol{u}=r \boldsymbol{u}+s \boldsymbol{u}$
- $r(s \boldsymbol{u})=(r s) \boldsymbol{u}$
- $1 \boldsymbol{u}=\boldsymbol{u}$

The properties above are also practically and mathematically important.

Subspaces

Since \mathbb{R}^{n} is a vector space, we have the concept of subspaces.
Given a vector space V, a subspace is any subset of V satisfying the definition of a vector space.
I.e., is a subset such that (a) adding two elements in the subspace together results in something in the same subspace and (b) multiplying any element by a scalar results in a vector again in the subspace.

Subspaces

Since \mathbb{R}^{n} is a vector space, we have the concept of subspaces.
Given a vector space V, a subspace is any subset of V satisfying the definition of a vector space.
I.e., is a subset such that (a) adding two elements in the subspace together results in something in the same subspace and (b) multiplying any element by a scalar results in a vector again in the subspace.

If W is a subspace of V, and \boldsymbol{u} and \boldsymbol{v} are any elements in W, then

- $\boldsymbol{u}+\boldsymbol{v}$ is also in W
- $c \boldsymbol{u}$ is also in W for any scalar c.

Subspaces examples

Example

In \mathbb{R}^{4}, is the set of tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying both

$$
\begin{array}{r}
x_{1}+3 x_{3}+4 x_{4}=0 \\
-x_{1}-2 x_{2}+x_{3}+x_{4}=0
\end{array}
$$

a subspace?

Subspaces examples

Example

In \mathbb{R}^{4}, is the set of tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying both

$$
\begin{array}{r}
x_{1}+3 x_{3}+4 x_{4}=0 \\
-x_{1}-2 x_{2}+x_{3}+x_{4}=0
\end{array}
$$

a subspace?

Example

Let \boldsymbol{A} be an $m \times n$ matrix. Let V be the set of vectors \boldsymbol{x} in \mathbb{R}^{n} satisfying

$$
A x=0 .
$$

Is V a subspace?

Subspaces examples, part 2

Example

Let V be the set of vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of \mathbb{R}^{n} such that $x_{1} \geqslant 0$. Is V a subspace?

Subspaces examples, part 2

Example

Let V be the set of vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of \mathbb{R}^{n} such that $x_{1} \geqslant 0$. Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ of \mathbb{R}^{n} such that $x_{1}^{2}+x_{2}^{2}=1$. Is V a subspace?

Subspaces examples, part 2

Example

Let V be the set of vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of \mathbb{R}^{n} such that $x_{1} \geqslant 0$. Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ of \mathbb{R}^{n} such that $x_{1}^{2}+x_{2}^{2}=1$. Is V a subspace?

Example

Let V be the set of vectors $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$ of \mathbb{R}^{3} such that $x_{1}+2 x_{2}-3 x_{3}=1$. Is V a subspace?

General vector spaces

Vector spaces can be very general spaces of objects. For example, elements (points) in a vector space can be entire functions.

General vector spaces

Vector spaces can be very general spaces of objects. For example, elements (points) in a vector space can be entire functions.

Example

Let V be the set of functions $f(\cdot)$ that map \mathbb{R} to \mathbb{R}. Is V a vector space?

General vector spaces

Vector spaces can be very general spaces of objects. For example, elements (points) in a vector space can be entire functions.

Example

Let V be the set of functions $f(\cdot)$ that map \mathbb{R} to \mathbb{R}. Is V a vector space?

Example

Let V be the set of functions $f(\cdot)$ that map \mathbb{R} to \mathbb{R}. Let W be the set of functions in V that are polynomials of degree 3 or less. Is W a subspace of V ?

