Matrix determinants

MATH 2250 Lecture 15
Book section 3.6

September 23, 2019
2×2 determinants

Given a 2×2 matrix,

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

the determinant of \boldsymbol{A} is denoted and defined as

$$
\operatorname{det}(\boldsymbol{A})=|\boldsymbol{A}|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Note that the determinant of a matrix is a scalar, and that we have several ways to denote a determinant.

Given a 2×2 matrix,

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

the determinant of \boldsymbol{A} is denoted and defined as

$$
\operatorname{det}(\boldsymbol{A})=|\boldsymbol{A}|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Note that the determinant of a matrix is a scalar, and that we have several ways to denote a determinant.

Recall that the factor $a d-b c$ appeared in our explicit formula for the inverse of 2×2 matrices - this is not coincidental.
Determinants play an essential role in linear algebra and linear systems.

Computing higher-order determinants

To compute the determinant of a 3×3 matrix, the following formula can be used:

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

The pattern is: we "expand" along the first row, and the 2×2 determinants multiplying the numbers in the first row are formed from matrices where we eliminate elements in the same row and column as the numbers.

Computing higher-order determinants

To compute the determinant of a 3×3 matrix, the following formula can be used:

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

The pattern is: we "expand" along the first row, and the 2×2 determinants multiplying the numbers in the first row are formed from matrices where we eliminate elements in the same row and column as the numbers.

Example

Compute the following determinants:

$$
\left|\begin{array}{cc}
3 & 4 \\
-1 & 2
\end{array}\right|, \quad\left|\begin{array}{ccc}
1 & 0 & 4 \\
-1 & 2 & -1 \\
0 & -2 & 2
\end{array}\right|
$$

A general procedure: minors and cofactors
Let \boldsymbol{A} be an $n \times n$ matrix.
The i, j minor of \boldsymbol{A} is $M_{i, j}$, the determinant of the $(n-1) \times(n-1)$ matrix formed by deleting row i and column j from \boldsymbol{A}.
The i, j cofactor of \boldsymbol{A} is $(-1)^{i+j} M_{i, j}$.

A general procedure: minors and cofactors

Let \boldsymbol{A} be an $n \times n$ matrix.
The i, j minor of \boldsymbol{A} is $M_{i, j}$, the determinant of the $(n-1) \times(n-1)$ matrix formed by deleting row i and column j from \boldsymbol{A}.
The i, j cofactor of \boldsymbol{A} is $(-1)^{i+j} M_{i, j}$.
To compute a general determinant, one can expand in cofactors along row i,

$$
\operatorname{det}(\boldsymbol{A})=\sum_{j=1}^{n} a_{i j}(-1)^{i+j} M_{i, j}
$$

for any $i=1, \cdots, n$. Or we can expand in cofactors along column j

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} M_{i, j}
$$

A general procedure: minors and cofactors

Let \boldsymbol{A} be an $n \times n$ matrix.
The i, j minor of \boldsymbol{A} is $M_{i, j}$, the determinant of the $(n-1) \times(n-1)$ matrix formed by deleting row i and column j from \boldsymbol{A}.
The i, j cofactor of \boldsymbol{A} is $(-1)^{i+j} M_{i, j}$.
To compute a general determinant, one can expand in cofactors along row i,

$$
\operatorname{det}(\boldsymbol{A})=\sum_{j=1}^{n} a_{i j}(-1)^{i+j} M_{i, j}
$$

for any $i=1, \cdots, n$. Or we can expand in cofactors along column j

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} M_{i, j}
$$

Note: one can choose any row or column to expand along; the answer will be the same.
One typically takes advantages of this and expands along the row/column with the maximum number of zeros.

Examples

Example

Compute the determinant

$$
\left|\begin{array}{ccc}
7 & 6 & 0 \\
9 & -3 & 2 \\
4 & 5 & 0
\end{array}\right|
$$

Examples

Example

Compute the determinant

$$
\left|\begin{array}{ccc}
7 & 6 & 0 \\
9 & -3 & 2 \\
4 & 5 & 0
\end{array}\right| .
$$

Example (Exercise 3.6.12)
Compute the determinant

$$
\left|\begin{array}{cccc}
2 & 0 & 0 & -3 \\
0 & 1 & 11 & 12 \\
0 & 0 & 5 & 13 \\
-4 & 0 & 0 & 7
\end{array}\right|
$$

Properties of determinants

Let \boldsymbol{A} be an $n \times n$ matrix. The following are properties of the determinant:

- For a constant c, then $\operatorname{det}(c \boldsymbol{A})=c^{n} \operatorname{det} \boldsymbol{A}$
- If a matrix \boldsymbol{B} is obtained from \boldsymbol{A} by interchanging two rows of \boldsymbol{A}, then $\operatorname{det} \boldsymbol{B}=-\operatorname{det} \boldsymbol{A}$
- If two rows of \boldsymbol{A} are identical, then $\operatorname{det} \boldsymbol{A}=0$.

Properties of determinants

Let \boldsymbol{A} be an $n \times n$ matrix. The following are properties of the determinant:

- For a constant c, then $\operatorname{det}(c \boldsymbol{A})=c^{n} \operatorname{det} \boldsymbol{A}$
- If a matrix \boldsymbol{B} is obtained from \boldsymbol{A} by interchanging two rows of \boldsymbol{A}, then $\operatorname{det} \boldsymbol{B}=-\operatorname{det} \boldsymbol{A}$
- If two rows of \boldsymbol{A} are identical, then $\operatorname{det} \boldsymbol{A}=0$.

There are far more interesting properties of determinants, some of which we'll use later in this class:

- $\operatorname{det}(\boldsymbol{A B})=\operatorname{det} \boldsymbol{A} \operatorname{det} \boldsymbol{B}$
- \boldsymbol{A} is singular (i.e., non-invertible) if and only if $\operatorname{det} \boldsymbol{A}=0$.
- The (i, j) entry of \boldsymbol{A}^{-1} is $(-1)^{i+j} M_{j, i}| | \boldsymbol{A} \mid$

