Matrix inverses

MATH 2250 Lecture 14 Book section 3.5

September 20, 2019

The identity matrix

We first define a special matrix, the $n \times n$ identity matrix,

$$
\boldsymbol{I}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

This matrix has 1's on the diagonal, and is zero everywhere else.

The identity matrix
We first define a special matrix, the $n \times n$ identity matrix,

$$
\boldsymbol{I}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

This matrix has 1's on the diagonal, and is zero everywhere else.
This matrix effects multiplicative identity: if \boldsymbol{A} is a matrix comprised of columns \boldsymbol{a}_{j}

$$
\boldsymbol{A}=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{n}
\end{array}\right],
$$

then via matrix multiplication operations, we can see that

$$
\boldsymbol{A I}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & \boldsymbol{a}_{n}
\end{array}\right]=\boldsymbol{A} .
$$

Similarly, one can show that $\boldsymbol{I} \boldsymbol{B}=\boldsymbol{B}$ for any matrix \boldsymbol{B} with n rows.

Matrix inverses

Like with scalars, the matrix that is the multiplicative identity is used to define what it means to "divide by" (multiplicatively invert) a matrix.

Matrix inverses

Like with scalars, the matrix that is the multiplicative identity is used to define what it means to "divide by" (multiplicatively invert) a matrix.

Let \boldsymbol{A} be a square $n \times n$ matrix. We seek to compute a new $n \times n$ matrix \boldsymbol{B} such that

$$
A B=B A=I .
$$

If we can find such a matrix, we call \boldsymbol{B} the matrix inverse of \boldsymbol{A}, and write $\boldsymbol{B}=\boldsymbol{A}^{-1}$.
If \boldsymbol{A} has a matrix inverse, we say that \boldsymbol{A} is invertible.

Matrix inverses

Like with scalars, the matrix that is the multiplicative identity is used to define what it means to "divide by" (multiplicatively invert) a matrix.

Let \boldsymbol{A} be a square $n \times n$ matrix. We seek to compute a new $n \times n$ matrix \boldsymbol{B} such that

$$
A B=B A=I .
$$

If we can find such a matrix, we call \boldsymbol{B} the matrix inverse of \boldsymbol{A}, and write $\boldsymbol{B}=\boldsymbol{A}^{-1}$.
If \boldsymbol{A} has a matrix inverse, we say that \boldsymbol{A} is invertible.

Example

Determine whether or not the following matrix is invertible, and if so compute its inverse.

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)
$$

Matrix inverses

Example

Determine whether or not the following matrix is invertible, and if so compute its inverse.

$$
\left(\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right)
$$

Matrix inverses

Example

Determine whether or not the following matrix is invertible, and if so compute its inverse.

$$
\left(\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right)
$$

Note that we can "divide by" a scalar a if and only if $a \neq 0$.
But with matrices, even if \boldsymbol{A} is not the zero matrix, sometimes we cannot invert it.

Matrix inverses

Example

Determine whether or not the following matrix is invertible, and if so compute its inverse.

$$
\left(\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right)
$$

Note that we can "divide by" a scalar a if and only if $a \neq 0$.
But with matrices, even if \boldsymbol{A} is not the zero matrix, sometimes we cannot invert it.

However, if an inverse exists, then it's unique:
Theorem
If an $n \times n$ matrix \boldsymbol{A} has a matrix inverse \boldsymbol{A}^{-1}, then \boldsymbol{A}^{-1} is the unique matrix inverse of \boldsymbol{A}.

2×2 matrix inverses

There is an explicit formula for the inverse of a 2×2 matrix:
Theorem
Consider a general 2×2 matrix:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then \boldsymbol{A} is invertible if and only if $a d-b c \neq 0$, and in this case its inverse is

$$
\boldsymbol{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

2×2 matrix inverses

There is an explicit formula for the inverse of a 2×2 matrix:
Theorem
Consider a general 2×2 matrix:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Then \boldsymbol{A} is invertible if and only if $a d-b c \neq 0$, and in this case its inverse is

$$
\boldsymbol{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Example

Determine whether or not the following matrix is invertible, and if so compute its inverse.

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)
$$

Inverses of matrix products

For completeness, we note that if \boldsymbol{A} is invertible, then

$$
\left(A^{-1}\right)^{-1}=\boldsymbol{A} .
$$

Inverses of matrix products

For completeness, we note that if \boldsymbol{A} is invertible, then

$$
\left(A^{-1}\right)^{-1}=A
$$

Inverses of matrix products involves a reversal of order: if \boldsymbol{A} and \boldsymbol{B} are both invertible matrices of the same size, then

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Furthermore, for any integer $k \geqslant 1$,

$$
\left(\boldsymbol{A}^{-1}\right)^{k}=\left(\boldsymbol{A}^{k}\right)^{-1}
$$

Linear systems and matrix inverses

Recall that we often write linear systems with n equations and n unknowns in matrix form as

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

where \boldsymbol{A} is a known $n \times n$ matrix, \boldsymbol{b} is a known $n \times 1$ vector, and \boldsymbol{x} is the unknown $n \times 1$ vector.

Linear systems and matrix inverses

Recall that we often write linear systems with n equations and n unknowns in matrix form as

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

where \boldsymbol{A} is a known $n \times n$ matrix, \boldsymbol{b} is a known $n \times 1$ vector, and \boldsymbol{x} is the unknown $n \times 1$ vector.

If \boldsymbol{A} is invertible, the solution \boldsymbol{x} to the system above is given by

$$
\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} .
$$

Linear systems and matrix inverses

Recall that we often write linear systems with n equations and n unknowns in matrix form as

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

where \boldsymbol{A} is a known $n \times n$ matrix, \boldsymbol{b} is a known $n \times 1$ vector, and \boldsymbol{x} is the unknown $n \times 1$ vector.

If \boldsymbol{A} is invertible, the solution \boldsymbol{x} to the system above is given by

$$
\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} .
$$

Example

Use matrix inverses to solve the system

$$
\begin{array}{r}
2 x_{1}+x_{2}=3 \\
-x_{1}+x_{2}=6
\end{array}
$$

Computing matrix inverses

L14-S07
We've seen how to compute 2×2 matrices.
There is a general procedure to compute inverses for matrices of any size: Gaussian elimination.

Computing matrix inverses

We've seen how to compute 2×2 matrices.
There is a general procedure to compute inverses for matrices of any size: Gaussian elimination.

Basic idea: recall that we can use row operations to transform an invertible matrix \boldsymbol{A} to a reduced Echelon matrix. If the matrix is invertible, this reduced Echelon form will be the identity matrix \boldsymbol{I}.

Computing matrix inverses

We've seen how to compute 2×2 matrices.
There is a general procedure to compute inverses for matrices of any size: Gaussian elimination.

Basic idea: recall that we can use row operations to transform an invertible matrix \boldsymbol{A} to a reduced Echelon matrix. If the matrix is invertible, this reduced Echelon form will be the identity matrix \boldsymbol{I}.
These row operations therefore transform \boldsymbol{A} to \boldsymbol{I}. Conceptually, we can use the same row operations to transform \boldsymbol{I} to \boldsymbol{A}.

Practically, we do this by performing Gaussian elimination on the matrix concatentation $\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{I}\end{array}\right]$.

Computing matrix inverses

We've seen how to compute 2×2 matrices.
There is a general procedure to compute inverses for matrices of any size: Gaussian elimination.

Basic idea: recall that we can use row operations to transform an invertible matrix \boldsymbol{A} to a reduced Echelon matrix. If the matrix is invertible, this reduced Echelon form will be the identity matrix \boldsymbol{I}.
These row operations therefore transform \boldsymbol{A} to \boldsymbol{I}. Conceptually, we can use the same row operations to transform \boldsymbol{I} to \boldsymbol{A}.

Practically, we do this by performing Gaussian elimination on the matrix concatentation $\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{I}\end{array}\right]$.
Example
Use Gaussian elimination to compute the matrix inverse of

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)
$$

Example

Compute the inverse of the matrix

$$
\boldsymbol{A}=\left(\begin{array}{lll}
4 & 3 & 2 \\
5 & 6 & 3 \\
3 & 5 & 2
\end{array}\right)
$$

Singular matrices

Matrix invertibility has strong connections to solutions of linear systems.
A square matrix \boldsymbol{A} is called singular if the equation $\boldsymbol{A x}=\mathbf{0}$ has a solution $\boldsymbol{x} \neq \mathbf{0}$.
A matrix that is not singular is non-singular.

Singular matrices

Matrix invertibility has strong connections to solutions of linear systems.
A square matrix \boldsymbol{A} is called singular if the equation $\boldsymbol{A x}=\mathbf{0}$ has a solution $\boldsymbol{x} \neq \mathbf{0}$.
A matrix that is not singular is non-singular.
Note that if \boldsymbol{A} is invertible, then

$$
\boldsymbol{A x}=\mathbf{0} \quad \Longrightarrow \quad x=A^{-1} \mathbf{0}=\mathbf{0}
$$

so that we expect that if \boldsymbol{A} is invertible, then it's nonsingular. Actually, much more is true.

Singular matrices

Matrix invertibility has strong connections to solutions of linear systems.
A square matrix \boldsymbol{A} is called singular if the equation $\boldsymbol{A x}=\mathbf{0}$ has a solution $\boldsymbol{x} \neq \mathbf{0}$.
A matrix that is not singular is non-singular.
Note that if \boldsymbol{A} is invertible, then

$$
\boldsymbol{A} \boldsymbol{x}=\mathbf{0} \quad \Longrightarrow \quad \boldsymbol{x}=\boldsymbol{A}^{-1} \mathbf{0}=\mathbf{0}
$$

so that we expect that if \boldsymbol{A} is invertible, then it's nonsingular. Actually, much more is true.

Theorem
If \boldsymbol{A} is a square $n \times n$ matrix, the following are all equivalent statements:

1. \boldsymbol{A} is invertible.
2. \boldsymbol{A} is non-singular (i.e., $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ is true only for $\boldsymbol{x}=\mathbf{0}$)
3. \boldsymbol{A} is row-equivalent to \boldsymbol{I}.
4. The equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a unique solution for any $n \times 1$ vector \boldsymbol{b}.
