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L14-S01The identity matrix
We first define a special matrix, the nˆ n identity matrix,

I “

¨

˚

˚

˚

˚

˚

˝

1 0 0 ¨ ¨ ¨ 0
0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‹

‚

This matrix has 1’s on the diagonal, and is zero everywhere else.

This matrix effects multiplicative identity: if A is a matrix comprised of
columns aj

A “ ra1 a2 ¨ ¨ ¨ ans ,

then via matrix multiplication operations, we can see that

AI “ ra1 a2 ¨ ¨ ¨ ans “ A.

Similarly, one can show that IB “ B for any matrix B with n rows.
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L14-S02Matrix inverses
Like with scalars, the matrix that is the multiplicative identity is used to
define what it means to "divide by" (multiplicatively invert) a matrix.

Let A be a square nˆ n matrix. We seek to compute a new nˆ n matrix B
such that

AB “ BA “ I.

If we can find such a matrix, we call B the matrix inverse of A, and write
B “ A´1.
If A has a matrix inverse, we say that A is invertible.

Example
Determine whether or not the following matrix is invertible, and if so
compute its inverse.

ˆ

2 1
´1 1

˙
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L14-S03Matrix inverses

Example
Determine whether or not the following matrix is invertible, and if so
compute its inverse.

ˆ

2 1
´4 ´2

˙

Note that we can “divide by" a scalar a if and only if a ‰ 0.
But with matrices, even if A is not the zero matrix, sometimes we cannot
invert it.

However, if an inverse exists, then it’s unique:

Theorem
If an nˆ n matrix A has a matrix inverse A´1, then A´1 is the unique
matrix inverse of A.
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L14-S042 ˆ 2 matrix inverses
There is an explicit formula for the inverse of a 2ˆ 2 matrix:

Theorem
Consider a general 2ˆ 2 matrix:

A “

ˆ

a b
c d

˙

.

Then A is invertible if and only if ad´ bc ‰ 0, and in this case its inverse is

A´1
“

1

ad´ bc

ˆ

d ´b
´c a

˙

.

Example
Determine whether or not the following matrix is invertible, and if so
compute its inverse.

ˆ

2 1
´1 1

˙
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L14-S05Inverses of matrix products

For completeness, we note that if A is invertible, then

`

A´1
˘´1

“ A.

Inverses of matrix products involves a reversal of order: if A and B are both
invertible matrices of the same size, then

pABq
´1
“ B´1A´1.

Furthermore, for any integer k ě 1,

`

A´1
˘k
“

´

Ak
¯´1
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L14-S06Linear systems and matrix inverses
Recall that we often write linear systems with n equations and n unknowns in
matrix form as

Ax “ b,

where A is a known nˆ n matrix, b is a known nˆ 1 vector, and x is the
unknown nˆ 1 vector.

If A is invertible, the solution x to the system above is given by

x “ A´1b.

Example
Use matrix inverses to solve the system

2x1 ` x2 “ 3

´x1 ` x2 “ 6
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L14-S07Computing matrix inverses
We’ve seen how to compute 2ˆ 2 matrices.

There is a general procedure to compute inverses for matrices of any size:
Gaussian elimination.

Basic idea: recall that we can use row operations to transform an invertible
matrix A to a reduced Echelon matrix. If the matrix is invertible, this
reduced Echelon form will be the identity matrix I.

These row operations therefore transform A to I. Conceptually, we can use
the same row operations to transform I to A.

Practically, we do this by performing Gaussian elimination on the matrix
concatentation rA Is.

Example
Use Gaussian elimination to compute the matrix inverse of

ˆ

2 1
´1 1

˙
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L14-S083 ˆ 3 matrix inverse

Example
Compute the inverse of the matrix

A “

¨

˝

4 3 2
5 6 3
3 5 2

˛

‚
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L14-S09Singular matrices
Matrix invertibility has strong connections to solutions of linear systems.

A square matrix A is called singular if the equation Ax “ 0 has a solution
x ‰ 0.
A matrix that is not singular is non-singular.

Note that if A is invertible, then

Ax “ 0 ùñ x “ A´10 “ 0,

so that we expect that if A is invertible, then it’s nonsingular. Actually, much
more is true.

Theorem
If A is a square nˆ n matrix, the following are all equivalent statements:
1. A is invertible.
2. A is non-singular (i.e., Ax “ 0 is true only for x “ 0)
3. A is row-equivalent to I.
4. The equation Ax “ b has a unique solution for any nˆ 1 vector b.
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