Matrix operations

MATH 2250 Lecture 13

Book section 3.4

September 18, 2019

Manipulations of matrices

If x and y are numbers, we have standard definitions for operations like

$$
x+y, \quad x-y, \quad x y, \quad \frac{x}{y}
$$

We also have properties of these operations: commutativity, associativity, distributivity, etc.

Manipulations of matrices

If x and y are numbers, we have standard definitions for operations like

$$
x+y, \quad x-y, \quad x y, \quad \frac{x}{y}
$$

We also have properties of these operations: commutativity, associativity, distributivity, etc.
If \boldsymbol{A} is an $m \times n$ matrix with $m=n=1$, then $\boldsymbol{A}=A$ is called a scalar. Hence, we have arithmetic rules for scalars.
We now explore similar notions for matrices.

Elementwise operations

An operation is elementwise if it is applied individually to each scalar element in a matrix.

Elementwise operations

An operation is elementwise if it is applied individually to each scalar element in a matrix.

Addition of matrices: Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ matrices. Then both

$$
\boldsymbol{A}+\boldsymbol{B}, \quad \boldsymbol{A}-\boldsymbol{B}
$$

are elementwise operations, adding/substracting entries elementwise, whose output is another $m \times n$ matrix.

Elementwise operations

An operation is elementwise if it is applied individually to each scalar element in a matrix.

Addition of matrices: Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ matrices. Then both

$$
\boldsymbol{A}+\boldsymbol{B}, \quad \boldsymbol{A}-\boldsymbol{B},
$$

are elementwise operations, adding/substracting entries elementwise, whose output is another $m \times n$ matrix.

Multiplication of a matrix and a scalar: Let \boldsymbol{A} be an $m \times n$ matrix, and c be a scalar.

$$
c \boldsymbol{A},
$$

is an elementwise operations, multiplying each element by c, whose output is another $m \times n$ matrix.

Example

Example

For arbitrary scalars s and t, we have

$$
\left(\begin{array}{c}
3-4 s \\
t+s \\
-t-4 \\
-1+s+t
\end{array}\right)=\left(\begin{array}{c}
3 \\
0 \\
-4 \\
-1
\end{array}\right)+s\left(\begin{array}{c}
-4 \\
1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right)
$$

Elementwise addition

If \boldsymbol{A} and \boldsymbol{B} are of different sizes, then $\boldsymbol{A} \pm \boldsymbol{B}$ is undefined.
Example
If

$$
\boldsymbol{x}=\left(\begin{array}{lll}
3 & 2 & -1
\end{array}\right),
$$

$$
\boldsymbol{y}=\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right)
$$

then $\boldsymbol{x}+\boldsymbol{y}$ is not defined.

Elementwise addition

If \boldsymbol{A} and \boldsymbol{B} are of different sizes, then $\boldsymbol{A} \pm \boldsymbol{B}$ is undefined.

Example

If

$$
\boldsymbol{x}=\left(\begin{array}{lll}
3 & 2 & -1
\end{array}\right),
$$

$$
\boldsymbol{y}=\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right)
$$

then $\boldsymbol{x}+\boldsymbol{y}$ is not defined.
If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are of the same size, then addition is commutative and associative:

$$
\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}, \quad \boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})=(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}
$$

Elementwise addition

If \boldsymbol{A} and \boldsymbol{B} are of different sizes, then $\boldsymbol{A} \pm \boldsymbol{B}$ is undefined.

Example

If

$$
\boldsymbol{x}=\left(\begin{array}{ccc}
3 & 2 & -1
\end{array}\right),
$$

$$
\boldsymbol{y}=\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right)
$$

then $\boldsymbol{x}+\boldsymbol{y}$ is not defined.
If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are of the same size, then addition is commutative and associative:

$$
\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}, \quad \boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})=(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}
$$

So far, this is all just the same as arithmetic for scalars.

Matrix multiplication

Unfortunately, a useful notion of matrix multiplication is more complicated. (Elementwise multiplication is well-defined, but not very useful.)

Matrix multiplication

Unfortunately, a useful notion of matrix multiplication is more complicated. (Elementwise multiplication is well-defined, but not very useful.)

A simple example of the type of multiplication that we need:

$$
\boldsymbol{x}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \Longrightarrow \boldsymbol{x} \boldsymbol{y}=\sum_{j=1}^{n} x_{j} y_{j} .
$$

Thus, \boldsymbol{x} is $1 \times n$, and \boldsymbol{y} is $n \times 1$.
The output $x y$ is a 1×1 scalar.

Matrix multiplication

Unfortunately, a useful notion of matrix multiplication is more complicated. (Elementwise multiplication is well-defined, but not very useful.)

A simple example of the type of multiplication that we need:

$$
\boldsymbol{x}=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \Longrightarrow \boldsymbol{x} \boldsymbol{y}=\sum_{j=1}^{n} x_{j} y_{j} .
$$

Thus, \boldsymbol{x} is $1 \times n$, and \boldsymbol{y} is $n \times 1$.
The output $x y$ is a 1×1 scalar.
Note that the product of these two vectors is formed by summing elementwise products.

We will use this general principle to define multiplication of general matrices.

Matrix multiplication

Let \boldsymbol{A} and \boldsymbol{B} be matrices. The matrix product $\boldsymbol{A B}$ is defined if and only if the number of columsn of \boldsymbol{A} equals the number of rows in \boldsymbol{B}.

Matrix multiplication

Let \boldsymbol{A} and \boldsymbol{B} be matrices. The matrix product $\boldsymbol{A B}$ is defined if and only if the number of columsn of \boldsymbol{A} equals the number of rows in \boldsymbol{B}.
I.e., $\boldsymbol{A B}$ makes sense if and only if \boldsymbol{A} is $m \times p$ and \boldsymbol{B} is $p \times n$, where n, p, and m are arbitrary.

- The output matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ has size $m \times n$.
- The i th row and j th column entry of C is computed from taking the vector product between the i th row of \boldsymbol{A} and the j th row of \boldsymbol{B}.

Matrix multiplication

Let \boldsymbol{A} and \boldsymbol{B} be matrices. The matrix product $\boldsymbol{A} \boldsymbol{B}$ is defined if and only if the number of columsn of \boldsymbol{A} equals the number of rows in \boldsymbol{B}.
I.e., $\boldsymbol{A B}$ makes sense if and only if \boldsymbol{A} is $m \times p$ and \boldsymbol{B} is $p \times n$, where n, p, and m are arbitrary.

- The output matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ has size $m \times n$.
- The i th row and j th column entry of C is computed from taking the vector product between the i th row of \boldsymbol{A} and the j th row of \boldsymbol{B}.

Example

Compute the following matrix products:

$$
\left(\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
3 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
2 & -1 & 0 \\
2 & 0 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
5 & 3 \\
-4 & 2
\end{array}\right)
$$

Matrix multiplication example

Example (Example 3.4.7)

Write the following system of linear equations as a vector equality involving a matrix-vector product:

$$
\begin{aligned}
3 x_{1}-4 x_{2}+x_{3}+7 x_{4} & =10 \\
4 x_{1}-5 x_{3}+2 x_{4} & =0 \\
x_{1}+9 x_{2}+2 x_{3}-6 x_{4} & =5
\end{aligned}
$$

Matrix multiplication properties

Matrix multiplication does not behave like scalar multiplication!

Matrix multiplication properties

Matrix multiplication does not behave like scalar multiplication! If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are matrices of the same size, then the distributive law does hold:

$$
A(B+C)=A B+A C, \quad(B+C) A=B A+C A
$$

Matrix multiplication properties

Matrix multiplication does not behave like scalar multiplication! If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are matrices of the same size, then the distributive law does hold:

$$
A(B+C)=A B+A C, \quad(B+C) A=B A+C A
$$

But in general we do not have commutativity! In general $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$. (Check this with almost any pair of 2×2 matrices!)

Matrix multiplication properties

Matrix multiplication does not behave like scalar multiplication! If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are matrices of the same size, then the distributive law does hold:

$$
A(B+C)=A B+A C, \quad(B+C) A=B A+C A
$$

But in general we do not have commutativity! In general $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$. (Check this with almost any pair of 2×2 matrices!)

There are even stranger things that happen with matrix multiplication:

Example (Example 3.4.8)

Let

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
4 & 1 & -2 & 7 \\
3 & 1 & -1 & 5
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{cc}
1 & 5 \\
3 & -1 \\
-2 & 4 \\
2 & -3
\end{array}\right), \quad \boldsymbol{C}=\left(\begin{array}{cc}
3 & 4 \\
2 & 1 \\
-2 & 3 \\
1 & -3
\end{array}\right)
$$

Show that $\boldsymbol{A B}=\boldsymbol{A C}$, even though $\boldsymbol{B} \neq \boldsymbol{C}$.

